TH HI-TECH CONSUMER'S GUIDE TO BATTERIES

TECHNOLOGY - VIDEO - STEREO - COMPUTERS - SERVICE

BUILD THIS

 ABORATORY UUUU UUNIO AMPLIFIER SUPPLYTwo fully floating variable 50 -volt, 5 -ampere supplies and one fixed 5-volt, 3-ampere supply fulfills all your benchtop needs

BUILD AN ION METER

Keep track of the levels of negative and positive ions in your environment

Compuntringt

Build a keyless entry system based on the 68705 microcontroller

$$
\begin{aligned}
& \text { Firntugat in } \\
& \text { Hi }
\end{aligned}
$$

FL-LKE

More professionals in more industries make Fluke their first choice in multimeters.
Fluke DMMs. Reliable. Accurate. Powerful. Tough. Versatile. Easy to use and simple to operate. Backed by the longest, most comprehensive warranty in the business. Made in the U.S.A. In short, Fluke makes meters you can bet your repulation on.
More choice. No matter what the job, there's a Fluke to handle it.
There's the new 80 Series-the most powerful, most complete test and measurement system available in a handheld package.

The popular 70 Series-simply put, the most requested DNiM in the wortc, with nearly 2 million units in service sirce 1984. And the Fluke 21 and 23-70 Series simplicity in high-visibility yellow.
The Fluke 25 and 27 -the most rugged meters ever built, totally sealed against water, dust and other contaminents.
And the precise 8060 Series-with the versatility of a test lab, the accuracy of a bench instrument, and the convenience of a handheld.
Smart choice. Compare Fluke DMMs with any other hanatheld. No one else gives you as much meter for your money. And no other meter costs less to own.

Your choice. For the name of your nearest Fluke distributtor, call tol|.free 1-800-44-FLUKE, ext. 33. And make a great choice.

> John Fluke Mtg. Co., inc. P.0. Box C9090 MIS 250 E Everett, WA 98206. U.S. : 206) $356-5400$. Canada. (416) $890-7600$. Other Countries: $(206) 356.550!$. 1989 John Fiuke Mtg. Co inc. All rights reserved. Ad No. 3491 -F70

FROM THE WORLD LEADER IN DIGITAL MULTIMETERS

March 1990
 Padio
 Electronics

Vol. 61 No. 3

BUTID Twis

31 UNIVERSAL LABORATORY POWER SUPPLY
 A flexible, high performance supply for your workbench. Reinhard Metz

35 ION METER

Now you can keep track of negative and positive ions in your environment.
Peter A. Lovelock

39 AUDIO VOLUME LIMITER

Improve the performance of low-cost audio amps.
Lowell D. Johnson

TMBITIOROGY

42 ALL ABOUT BATTERIES your next project!
 Josef Bernard
 EOWPDintis

How to select the best power source for your equipment...or

71 BUILD A DIGITAL KEYLESS ENTRY SYSTEM
 Use the 68705 microcontroller to improve your security.
 Steven Avritch

Ciliturs

52 WORKING WITH AUDIO POWER OP-AMP IC's
A circuit cookbook with scores of practical circuits.
Ray Marston

Diphinwinivs

6 VIDEO NEWS
What's new in this fastchanging field.
David Lachenbruch
18 EQUIPMENT REPORTS
Jameco Electronics
Wishmaker II Prototyping System
Beckman Industrial FG3A 2 MHz Sweep/Function generator

58 HARDWARE HACKER
Synchronous demodulation.
Don Lancaster

77 AUDIO UPDATE
Do we hear things differently?
Larry Klein
71 EDITOR'S WORKBENCH
Booting from a PROM
Jeff Holtzman

PAGE 71

PAGE 42

men wois

96 Advertising and Sales Offices

96 Advertising Index
8 Ask R-E
97 Free Information Card
14 Letters
79 Market Center
22 New Products
4 What's News

OU WII: COHP

Ifyou're looking for a power supply that combines high voltage, high current, and adjustability, then your search has ended. This month's cover project offers two fully floating, adjustable 50 -volt, 5 -amp supplies, along with a fixed 5-volt 3-amp supply.

The price of the supply is a steal when compared to commercially available units. Even better, a modular design allows you to build in only the features you need, keeping costs down even more. For all the technical and construction details, turn to page 31. COVING NTFH RONTH

THE APRIL ISSUE GOES ON SALE MARCH 1

BUILD THE MORSE DETECTOR

This sophisticated project decodes morse code and RTTY signals.

BUILD A SOLID-STATE WIPER CONTROL

Beat those April showers with this easy-to-build project.

ONE-CHIP FREQUENCY CONVERTER

An in-depth look at the Signetics NE602.

GLITCHES IN THE POWER LINE

Everyone involved in electronics should understand the causes of and cures for power-line disturbances.

AUDIO-AMP COOKBOOK

Automotive applications for power op-amp IC's.

[^0]of Circulation
31

Badio
 Electroniss

Hugo Gernsback (1884-1967) founder M. Harvey Gernsback, editor-in-chief, emeritus

Larry Steckler, EHF. CET, editor-in-chief and publisher

EDITORIAL DEPARTMENT
Brian C. Fenton, editor
Marc Spiwak, associate editor
Daniel Goodman, technical editor
Teri Scaduto, assistant editor
Jeffrey K. Holtzman computer editor
Robert Grossblatt, circuits editor
Larry KIein, audio editor
David Lachenbruch contributing editor
Don Lancaster contributing editor
Richard D. Fitch contributing editor
Kathy Campbell, editorial assistant

ART DEPARTMENT

Andre Duzant, art director
Injae Lee, illustrator
Russell C. Truelson, illustrator
PRODUCTION DEPARTMENT
Ruby M. Yee, production director
Robert A. W. Lawndes, editorial production
Karen S. Tucker advertising production
Marcella Amoroso productionassistant

CIRCULATION DEPARTMENT
Jacqueline P. Cheeseboro circulation director
Wendy Alanko circulation analyst
Theresa Lombardo circulation assistant
Michele Torrillo, reprint bookstore
Typography by Mates Graphics
Cover photo by Diversified Photo
Services
Radio-Electronics is indexed in Applied Science \& Technology Index and Readers Guide to Periodical Literature.
Microfilm \& Microfiche editions are available. Contact circulation department for details.

Advertising Sales Offices listed on page 96 .

Learn professional VCR servicing at home or in your shop with exclusive videotaped demonstrations

Today, there are more than 10 million VCRs in use, with people standing in line to have them serviced. You can bring this profitable business into your shop with NRI professional training in VCR servicing. This top-level training supports the industry's claim that the best technicians today are those who service VCRs.

Integrated Three-Way Self-Teaching Program

In one integrated program, NRI gives you a study guide, 9 instructional units, 2 hours of video training tapes accompanied by a 32-page workbook that pulls it all together. At home or in your shop, you'll cover all the basic concepts of video recording, mechanical and electronic systems analyses, and the latest troubleshooting techniques. Your workbook and instructional units also contain an abundance of diagrams, data, and supplementary material that makes them valuable additions to your servicing library.

The "How-To" Videotape

Your NRI Action Videocassette uses every modern communications technique to make learning fast and easy. You'll enjoy expert lectures and see animation and video graphics that make every point crystal-clear. You'll follow the camera eye into the heart of the VCR as step-by-step servicing techniques are shown. Both electronic and mechanical troubleshooting are covered including everything from complete replacement and adjustment of the recording heads to diagnosing microprocessor control faults

Plus Training On All The New Video Systems

Although your course concentrates on VCRs covering Beta, VHS, and $3 / 4^{\prime \prime}$ U-Matic commercial VCRs, NRI also brings you up to speed in other key areas. You'll get training in capacitance and optical video disc players, projection TV, and video cameras. All are included to make you the complete video technician. There's even an optional final examination for NRI's VCR Professional Certificate.

This exclusive self-study course has been developed by the professionals at NR1. NRI has trained more television technicians than any other electronics school! In fact, NRI has consistently led the way in developing troubleshooting techniques for servicing virtually every piece of home entertainment equipment as it appears in the marketplace

Satisfaction Guaranteed . . . 15-Day No-Risk Examination

Send today for the new NRI SelfStudy Course in VCR Servicing for

Professionals. Examine it for 15 full days, look over the lessons, sample the videotape. If you're not fully satisfied that this is the kind of training you and your people need to get into the profitable VCR servicing business, return it for a prompt and full refund, including postage. Act now, and start adding new business to your business.

Special Introductory Offer

This complete VCR training course with two hour videotape is being offered for a limited time only, on orders received from this ad, at our low introductory price of $\$ 179.95$. Save $\$ 20$ by acting now?

NRI Training For Professionals

McGraw-Hill Continuing Education Center 4401 Connecticut Ave Washington, OC 20008
 Get me started in profitable VCR servicing. Rush me my NRI self-study course in VCR Servicing for Professionals. I understand I may return it for a fuil refund within 15 days if not completely satisfied.

NRI Training For Professionals McGraw-Hill Continuing

Education Center
4401 Connecticut Avenue
Washington, DC 20008
PLEASE SPECIFY TAPE FORMAT DESIRED \square VHS \square BETA

```
Name (please print)
Company
Street
City/SateZip
Enclosed is my }\square\mathrm{ check }\square\mathrm{ money order for $179.95 (D.C. residents add 6% tax) Make check payable to NRI
Charge to }\square\mathrm{ VISA }\square\mathrm{ MasterCard
            Interbank Number
Card Number___ Expiration Date
Signature

\title{
What's News
}

\section*{New path for computer electronics?}

A team of IBM researchers led by Dr. Mordehai Heiblum have demonstrated that fast-moving "ballistic" electrons can be focused and steered as they travel at very low temperatures through gallium arsenide-a semiconductor material that holds promise for use in future computers. The result of studies at the Thomas J. Watson Research Center in Yorktown Heights, NY (where the same research group previously demonstrated that ballistic electrons can travel through ultra-thin layers of gallium arsenide at speeds greater than \(1,000,000 \mathrm{mph}\) ), the discovery raises the possibility that 21st-century computer architects might possibly be able to use directed beams of electrons in computerchip circuitry.

Normally, electrons moving through a semiconductor travel only a very short distance-known as the "mean free path"--before they collide with atoms, other electrons, or impurities. That causes the electrons to scatter and, in the process, to lose energy and change direction. The mean free path in those experiments is lengthened by reducing the temperature to \(-450^{\circ} \mathrm{F}\), which greatly reduces the normal motion of atoms in the semiconductor material, thus reducing the chance of collision with electrons. That allows the electrons to travel "bal-listically"-in other words, without scattering.
The experimental setup was a type of microelectronic switch that involved "injecting" high-energy electrons on one side of a 2 -micron region of semiconductor ma-


TO FOCUS AND STEER BALLISTIC electrons, traveling through a tiny region of the semiconductor material gallium arsenide, scientists "injected" them through an injector (I), focused the electron beam with a tiny metal lens ( L ), and "collected" the electrons in three areas (C1, C2, and C3).
terial, and "collecting" them at the other side. The electrons traveled ballistically through a "two-dimensional electron gas," a region free of impurities that might cause en-ergy-wasting collisions.

The scientists applied a voltage to a curved lens as the electrons passed underneath it, causing the electrons to slow down and be focused.

To demonstrate that the path of travel could be controlled, they applied a differential voltage across tiny metal gates as they injected the electrons into the semiconductor. They were able to steer the electrons about 60 degrees off the original path over a distance as long as two microns. (One micron equals \(1 / 25,000\) th of an inch.)

Substantial development hurdles would still have to be crossed before the controlled electron beams could find any practical application in future computer technology.

\section*{Satellite capabilities coming down to earth?}

The first field trial of fiber-optic networks for broadcast television began in December 1989 with

ABC's transmission of live television from New York to seven cities across the country. The first of five consecutive trials coordinated by Bellcore (Livingston, NJ) used
coast-to-coast fiber-optic links to determine how efficiently network television studios can broadcast programming to affiliate stations using a land-based alternative to satellites, which are now used almost exclusively by major broadcasters to ل Jistribute and collect programming.
Besides ABC, CBS, FOX, NBC, and PBS are participating-along with some 50 television stations, manufacturers, suppliers, interexchange carriers, and exchange carriers. The trial networks, established between Atlanta, Boston, Indianapolis, Los Angeles, Minneapolis, New York, St. Louis, and Washington, transmit conventional television signals at 45 megabits per second (DS3 rate). The signals travel over a two-way, tree-branch-like network that permits broadcasters to distribute programming simultaneously to any number of affiliate stations and to receive programming from those stations individually. Eight Bell operating companies and five interexchange carriers are providing the fiber-optic networks for the trials, and several suppliers are providing equipment ranging from video and audio codecs to a new multi-cast switch.

Various factors have combined to make the tests possible, including the declining cost of a DS3 channel and the availability of fiber optics (about 300 cities are connected by fiber optics and are capable of transmitting video at the DS3 rate). Space is limited on satellites, which are also subject to the problems of aging. Further, fiber networks offer near-instantaneous customizing of a program's destinations, lack of signal interference, security from unauthorized receivers, multiple simultaneous audio-channel capability, and the flexibility to make every network affiliate a program source.

R-E

\title{
5 WAYS TO STOP WASTING TIME IN ELECTRONICS.
}

Stop wasting your time soldering. Save hours of soldering, desoldering, resoldering with Quick Test \({ }^{\text {T" }}\) sockets and bus strips. Connect/ disconnect resistors, capacitors, transistors, ICs, etc. as fast as you can push in/pull out leads. Interlock for limitless expandability. Priced as low as \(\$ 1.60\), you'll wonder how you've done without them!


5-color coded binding posts and 17 sockets, for over 4,560 contact points. Lifetime guarantee. Americanmade.
Affordably priced.

Stop wasting your time breadboarding. Here are three popular PROTO BOARD \({ }^{\circledR}\) Brand solderless breadboarding systems that meet any budget or time schedule. First the diminutive PB-10's 840 contact points and 3 -color binding posts. PB-102 has 1,240 tie points, accepting up to 12 16-pin ICs. Finally, PB-103, with 2,250 contact points, and up to 24 16-pin capacity They're affordable, American-made lifetime guaranteed. You'll soon see why PROTO BOARD Brand is Today's Standard for Quality in Breadboarding


Stop wasting your time jury-rigging
large numbers of circuits. Here are two oversized PROTO BOARDS Brand, with expanded area, tie points, and more to keep your ideas together. P8104 features 3,060 tie points, which can handle to 32 16-pin ICs with ease. Four color coded binding posts, and roomy \(9.2^{\prime \prime} \times 8^{\prime \prime}\) metal panel make it big...but simple. The humungous PB- 105 lets you load up to 48 16-pin ICs, and much more onto its

\title{
VIDEO News
}
- LCD projectors. Some technologies advance slowly, some rapidly. An example of the latter seems to be LCD projection TV, which uses liquidcrystal devices as light valves, or shutters. Those projectors can throw a large picture on an external screen. The first such projector to be marketed, introduced in the autumn of 1988 by Eastman Kodak (now being sold under the Seiko Epson name), had the drawback of a very coarse picture. Its three LCD's (one for each primary color) had resolution of 70,400 pixels. Last year, Sharp introduced its own version with much improved performance, with resolution of about 89.500 pixels. Evolution continues with a highresolution version jointly introduced in Japan by JVC and Seiko, which provides resolution of 210,000 pixels. The LCD projectors are still highpriced ( \(\$ 3,500\) to almost \(\$ 7,000\) ), but many video engineers believe that the LCD lightvalve is the key to giant-screen TV's future.
- Giant TV tubes. At a time when many critics are saying that there is no American TVreceiver industry, worldwide television manufacturers are sharply increasing their investment in the United States to build giantscreen picture tubes here. Before the current wave of expansion began last year, the largest size picture tube produced in the U.S. was 27 inches, measured diagonally. Most of the expansion is in plants to manufacture tubes 30 inches and larger, in some cases with provisions for later conversion to production of widescreen tubes for High-Definition TV (HDTV). Major bigscreen plants or additional facilities in the United States have been announced so far by Thomson Consumer Electronics (RCA and GE brands) to make 31- and 35 -inch tubes; by Toshiba for 30and 32 -inch tubes; and by Philips (Philips, Magnavox, and Sylvania) for 27 -inch tubes. Hitachi reportedly is seeking a plant in the United States to build giant tubes.
- Interactive video. Will the videodisc of the near future be based on the audio compact disc? Major developments seem to indicate that interactive audio-video discs with full realtime
motion are in the works. Two systems-both using standard five-inch CD's-are in competition. Although the Compact DiscInteractive (CD-I) was the first to be announced, its video capabilities heretofore have been confined to still motion and very limited animation. A competing system called Digital Video-Interactive (DVI), developed at the Sarnoff Research Center and being prepared for production by Intel, claims full-motion, highresolution video. Not to be outdone, Philips, one of the developers of CD-I, recently announced the breakthrough to 70 minutes of full-motion video. Both systems could be offered to the public late this year or early next year.

Intel is expected initially to aim DVI at computer users, while Philips, Sony, and others probably will push CD-I as a consumerentertainment and -education medium. In addition to its interactive capabilities, the new type of video CD-ROM could become the first alldigital video product, eventually replacing the current 12-inch laserdisc (which has analog video and both analog and digital audio).
- HDTV progress. The tide is turning in American research on HDTV. The Advanced Television System Committee (ATSC), which is coordinating development and testing of proposed systems for the United States, notes that as tests get nearer many proposed systems are changing. The FCC has ruled that any American HDTV systems must be compatible with existing television, and that no system may use more than two \(6-\mathrm{MHz}\) channels. Most of the initial proposals envisioned the addition of a second "augmentation" channel to an existing conventional channel to add the extra lines of resolution and the "ears" for the wider picture. Now, ATSC Chairman James McKinney notes that most of the systems have switched to "simulcast" systems-those that leave the current conventional channels alone and add a separate \(6-\mathrm{MHz}\) channel to provide a complete HDTV picture. McKinney said recently that four of the five remaining proposals for HDTV systems envision simulcasting.

\title{
Radio Shaek Parts Plaee. \\ \\ GREAT VALUES FOR YOUR PROJECTS AND FIX-UPS
} \\ \\ GREAT VALUES FOR YOUR PROJECTS AND FIX-UPS
}

\section*{Parts Special-Order "Hotline"}


ICs, Crystals, Tubes, Lots More!
Your Radio Shack manager can specialorder a wide variety of parts and accessories fram our warehouse-Long-Life tubes, linear and digital ICs, phono cartridges and styli, crystals, transistors, diodes, even SAMS Photofacts \({ }^{\text {® }}\). No handling charge, no shipping charge-just fast delivery to the Radio Shack near you!

\section*{Battery Special-Order Service}


In addition to our large in-store stock, Radio Shack can now supply almost any battery manufactured! Batteries are sent from our warehouse to the Radio Shack near you. You never pay a postage charge!

\section*{PC Cords \& Multiconductor Cables}
(2)

(3)
(4)

(5)
(1)

(1) Double-Shielded Cable. 9-Cond. \#278-775, 596 per tt. 25-Cond. \#278-776, 1.19 per ft.
(2) CEE-Type Power Cord Extension. \#278-1259 4.99
3) Power Cord with \(90^{\circ}\) CEE Connector. \#278-1260 5.99
(4) PC Power Cord with Straight CEE Connector. \#278-1257 . 3.99
(5) Snap-Together RFI Choke Core. \#273-104
Pkg. of \(2 / 7.95\)

\section*{Replacement Rod Antennas}
(1)

(3)
\begin{tabular}{|c|c|c|c|c|}
\hline Fig. & Sections & Extended & Cat. No. & Each \\
\hline 1 & 5 & \(301 / 2^{\prime \prime}\) & 270.1401 & 2.99 \\
- & 4 & \(3434^{\prime \prime}\) & \(270-1402\) & 3.69 \\
- & 3 & \(391 / 2^{\prime \prime}\) & \(270-1403\) & 3.89 \\
\hline 2 & 6 & \(111 / 4^{\prime \prime}\) & \(270-1411\) & 2.99 \\
- & 2 & \(1612^{\prime \prime}\) & \(270-1412\) & 2.79 \\
- & 9 & \(24^{\prime \prime}\) & \(270-1413\) & 3.99 \\
- & 5 & \(131 / 2^{\prime \prime}\) & \(270-1414\) & 2.49 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Fig & Sections & Extended & Cat. No. & Each \\
\hline 3 & 5 & \(28^{\prime \prime}\) & \(270-1405\) & 3.19 \\
- & 5 & \(15^{1 / 2^{\prime \prime}}\) & \(270-1406\) & 2.79 \\
- & 6 & \(72^{\prime \prime}\) & \(270-1408\) & 3.99 \\
- & 5 & \(13^{\prime \prime}\) & \(270-1407\) & 2.79 \\
- & 6 & \(173 / 4^{\prime \prime}\) & \(270-1409\) & 2.59 \\
- & 6 & \(16^{\prime \prime}\) & \(270-1410\) & 2.99 \\
\hline
\end{tabular}

\section*{Thermo Module}


LCD F/C display. Use as thermometer or add simple circuitry to control fan, buzzer, heater. Programmable. \#277-123 . . . . 19.95
Pocket
(2) Ridrio moek Guides

(1) Color Codes. Id's all resistor, capacitor, and inductor values. \#271-1210
. 694 (2) Ohms Law/Parallel Resistance Slide Chart Calculator. \#271-1211
59 C
(1) Red Jumbo. \#276-086, 4.99 (2) Red Blinking. \#276-020, 3.99 (3) Brilliant Red 2000 mcd. 20 mA/1.85VDC. \#276-087

\section*{Crade Au + Plugs}

(1) Deluxe Phono Plug. For 6 mm OFC cable. \#274-860 .... 4.99 8 mm Plug. \#274-861 ... 5.99 (2) Three-Conductor \(1 / \mathrm{s}^{\prime \prime}\) Phone Plug. Stereo. \#274-858 . . . 3.49 (3) Two-Conductor \(1 / 4^{\prime \prime}\) Phone

Plug. Monaural. \#274-855 . . 3.49

\section*{Hot Hobby Items}

(1) 1.5-3V DC Motor. 8300 RPM \(11 / 2 \times 15 / 16^{\prime \prime}\) dia. \#273-223 . . . 996
(2) Piezo Buzzer. \#273-074, 2.99 (3) 1:1 Audio Transformer. 600 to 900 . \#273-1374

\section*{Tantalum Caps}

Low As

\section*{\(59^{c}\)}

High Capacity
\begin{tabular}{|c|c|c|c|}
\hline\(\mu F\) & WVDC & Cat. No. & Each \\
\hline 0.1 & 35 & \(272 \cdot 1432\) & .59 \\
0.47 & 35 & \(272 \cdot 1433\) & .59 \\
1.0 & 35 & \(272 \cdot 1434\) & .59 \\
\hline 2.2 & 35 & \(272 \cdot 1435\) & .69 \\
10 & 16 & \(272 \cdot 1436\) & .79 \\
22 & 16 & 272.1437 & 1.19 \\
\hline
\end{tabular}

\section*{Solder Products}

(1) Rosin Soldering Paste Flux. \#64-021 1.79 (2) Solder-Weld Silver-Bearing Paste. \#64-029 ...... 2.59 (3) Lead-Free Solder Handy-Pak. .032", 0.25 oz. \#64-025 .... 1.99 .062", 0.50 oz. \#64-026 .... 1.49

(1) SPST Momentary Pushbutton. 3A/125VAC. \#275-1556, 1.99 (2) Lighted SPDT Push-On/Off. 3A/125VAC. 12 V lamp. \#275-676

\section*{30-Range Multimeter}
\(0.5^{\prime \prime}\) LCD
Display 99

Built-in capacitor and transistor test functions make this an incredible value! Continuity sounder, low-battery indicator, diode checker. Measures to 1000 VDC and 750 VAC, 10 amps AC/DC, resistance, capacitance, transistor gain. Battery extra. \#22-194 .... 79.95

High-Style Project Box


Give projects that professional look with this classy two-piece enclosure. Interlocking design lets you shorten box if desired. Polycarbonate material is impact resistant, yet easily drilled. Accepts PC board and 9 V battery. \(55 / 8 \times 21 / 4 \times 11 / 16^{\prime \prime}\). \#270-257

\section*{B-Board and Jumpers}

(1) Archere Universal Breadboard. Molded \(2^{1 / 4} \times 6^{1 / 2^{\prime \prime}}\) board on a \(7 \times 4^{\prime \prime}\) steel base, rubber feet. 640 plug-in points, three binding posts for fast circuit design. \#276-169
. 19.95 (2) Breadboard Jumper Wire Kit. Has 140 insulated wires in a handy snapshut plastic box. \#276-173
\(\begin{array}{r}\text { Set } 4.95 \\ \hline\end{array}\)

Over 1000 items in stock! Binding Posts, Books, Breadboards, Buzzers, Capacitors, Chokes, Clips, Coax, Connectors, Fuses, Hardware, ICs, Jacks, Knobs, Lamps, Multitesters, PC Boards, Plugs, Rectifiers, Resistors, Switches, Tools, Transformers, Transistors, Wire, Zeners, More!

Radio Shaek
The Technology Store \({ }^{\text {sM }}\)

\title{
Ask R-E
}

\section*{AUTO NINTENDO}

We have a Nintendo system and would like to be able to use it in our van when we're traveling. Our small portable TV works fine when operating off the car's 12 volts, but the Nintendo requires 9 volts at about 850 milliamps. Is there anything that can be done to enable the Nintendo to be powered by the car's electrical system?-M. McCalla, Lanett, AL

There are lots of ways to do that, and which one you choose depends on how much work you want to make for yourself. The answers range from a simple store-bought solution to a few hours on the bench building a box of your own. The choice is yours.

If you're only interested in results, there's no doubt that the easiest thing to do is stop at your local electronics store and see what's hanging around on the shelves. The adapters should be fairly easy to find because they're also needed by people who want to run a compact disc player off the car's electrical system and that, as we all know, is a very popular thing to do.

There are two things to watch out for when you're shopping for an adapter. The first is that it can supply the correct voltage at the required current levels, and the second has to do with the mechanical connection at the power plug.
You shouldn't have any trouble finding an adapter that can supply the proper voltage and current since compact-disk players usually want about the same amount of power. Assuming that you do find one, be very careful to check the voltage polarity at


FIG. 1
the power plug. There's unfortunately no standard whatsoever about assigning plus and minus. Some adapters put ground on the center terminal and others put it on the collar. The polarity should be marked on the adapter, and your Nintendo probably has it embossed on the plastic case. Double-check everything with a meter before you make any connections. If it is backwards, cut the wire and splice it correctly. It would be a lot better to resolder it at the plug, but most of the adapters use molded plugs.

If you can't find an adapter in the store, you can build one using the circuit in Fig. 1. That is just a simple 7805 regulated supply with the ground leg lifted to raise the output voltage. You can get 850 mA out of a 7805, but you'll have to heat-sink it properly to avoid thermal shutdown. Build the circuit in a plastic box and rotate the pot until you find the point where it's putting out nine volts.
You can substitute an LM317 for the 7805 if you're really worried about drawing that much current, but a well-heat-sinked 7805 should be fine. And even though the Nintendo is rated for

850 mA , I doubt that it really requires that much.

\section*{CHIP REMOVAL}

I have to repair my audio amplifier and, after spending some time on the circuit, I'm pretty sure that the problem is a bad operational amplifier. My problem is that the chip, like all the others in the amplifier, is soldered directly to the board. What's the best way to get the chips off the board so I can test them?-F. Geoffrey, New York, N.Y.

As sad as I am to say this, I don't believe there's any absolutely safe way to unsolder IC's from a circuit board. The best way I know to get a chip off a board with the least risk of damage is to use a solder pot, a spring-loaded extractor, and a steady hand.

You'll need enough solder in the pot to form a meniscus on the top. Once the solder is melted, put the spring-loaded chip extractor under the IC and carefully lower the foil side of the board into the solder. As soon as the solder on the board melts, the chip should pop out of its holes. You'll probably wind up with some solder bridges on the board afterwards, but you can easily clean them up.

If the board is double-sided or, worse yet, a multilayer board, the chances of success with that method are going to go from soso to just about nonexistent. Solder has a nasty habit of leaching its way into places where it shouldn't go, and the more layers there are, the more places the solder can creep.

I've removed IC's using that method but, no matter how care-

\title{
How to build a high-paying career, even a business of your own, in computer programming.
}


\author{
RICK BRUSH, \\ NRI PROGRAMMER/ANALYST
}

Start with training that gives you hands-on programming experience -at home and at your own pace. Training that begins with BASIC, then continues with Pascal, \(C\), and COBOL-today's hottest computer languages. Training that even includes a powerful IBM-compatible computer, modem, and programming software you keep.

Start with real-world training. The kind of training only NRI provides.
Now with NRI's new at-home training in Computer Programming, you can be one of today's highly paid, creative team of computer wizards who give computers the power to carry out an astonishing range of business, professional, and personal applications. Now, with NRI, you can be a computer programmer, ready to build a highpaying career-even a business of your own - making computers do anything you want them to do.
baud internal modem, 640 K RAM, disk drive, monitor, and invaluable programming software--BASIC, Pascal, C , and COBOL all yours to keep.
You get the experience and the know-how, the computer and the software to get to the heart of every programming problem, design imaginative solutions, then use your choice of four key computer languages to build original, working programs.
No matter what your background,
NRI gives you everything you
need to succeed in programming,

\section*{today's top-growth}
computer career field.
You need no previous experience to build a successful programming career with NRI training. Indeed, your NRI lessons start by walking you step by step through the fundamentals, giving you an expert understanding of the programming design techniques used every day by successful micro and mainframe programmers. And then the fun really begins.

C , and COBOL. Then, rounding out your training, you use your modem to "talk" to your instructor, meet other NRI students, even download programs through NRI's exclusive programmers network, PRONET.

\section*{Your career in computer programming begins with your FREE catalog from NRI.}

For all the details about NRI's at-home training in Computer Programming, send the coupon today. Soon you'll receive NRI's fascinating, informationpacked, full-color catalog.

Open it up and you'll find vivid descriptions of every aspect of your NRI training. You'll see the computer system included in your course up close in a special, poster-sized foldout section. And, best of all, you'll find out how your NRI training will make it easy for you to build that high-paying career - even a business of your own-in computer programming.


You master today's hottest computer languages, galning the skills you need to bulld programs for a wide varlety of real-world appllcations.

With your personal NRI instructor on call and ready to help, you use your computer and software to actually design, code, run, debug, and document programs in BASIC, Pascal,

\section*{Send for your NRI catalog today.} It's yours, free.
If the coupon is missing, write to us at the NRI School of Computer Programming, McGraw-Hill Continuing Education Center, 4401 Connecticut Avenue, NW, Washington, DC 20008.

IBM is a Registered Trademark of the IBM Corporation

\section*{AThool of Computer Programming}

McGraw-Hill Continuing Education Center 4401 Connecticut Avenue, NW Washington, DC 20008
YES! Please rush me my FREE catalog describing NRI's at-home training in Computer Programming.

fullam, my success rate has never been any more than fifty percent. As a result, there's no way to be sure that a removed IC that tests bad wasn't destroyed in the act of removing it from the board.

If you suspect an IC of being bad, you're better off upgrading your suspicion to a certainty, and give up the idea of safely unsoldering the chip. Take a pair of cutters, snip the legs as close to the IC body as possible, and un-
solder each leg from the board. Once you do that, you can clean the board, solder in an IC socket, and replace the chip with one you know is good.

\section*{OVERPOWERING AM}

Every time I turn on my stereo I can hear a local AM station in the background. Is there anything I can do to get rid of it?-J. Saffir, Miami, FL

You can buy the station and close it down, but that's probably


\section*{You Have Counted on Us for 15 Years}

You have counted on OPTOELECTRONICS Hand Held Frequency Counters to be the best quality, to be affordable and reliable. We have been there for you with Frequency Counters that are compact and ultra sensitive.

And more and more of you are counting on us, technicians, engineers, law enforcement officers, private investigators, two-way radio operators, scanner hobbyists, and amateur radio operators, just to name a few.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Hand Held Series Frequency Counters and Instruments} \\
\hline MODEL & 2210 & 1300H/A & 2400 H & CCA & CCB \\
\hline RANGE: FROM & \[
\begin{aligned}
& 10 \mathrm{~Hz} \\
& 2.2 \mathrm{GHz}
\end{aligned}
\] & \[
\begin{aligned}
& 1 \mathrm{MHz} \\
& 1.3 \mathrm{GHz}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{MHz} \\
& 2.4 \mathrm{GHz}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{MHz} \\
& 550 \mathrm{MHz}
\end{aligned}
\] & \[
\begin{aligned}
& 10 \mathrm{MHz} \\
& 1.8 \mathrm{GHz}
\end{aligned}
\] \\
\hline APPLICATIONS & General Purpose Audio-Microwave & RF & Microwave & Security & Security \\
\hline PRICE & \$219 & \$169 & \$189 & \$299 & \$99 \\
\hline SENSITIVITY & & & & & \\
\hline 1 KHz & < 5 mv & NA & NA & NA & NA \\
\hline 100 MHz & \(<3 \mathrm{mv}\) & \(<1 \mathrm{mv}\) & < 3 mv & < .5 mv & < 5 mv \\
\hline 450 MHz & \(<3 \mathrm{mv}\) & \(<5 \mathrm{mv}\) & \(<3 \mathrm{mv}\) & < 1 mv & \(<5 \mathrm{mv}\) \\
\hline 850 MHz & \(<3 \mathrm{mv}\) & < 20 mv & \(<5 \mathrm{mv}\) & NA & \(<5 \mathrm{mv}\) \\
\hline 1.3 GHz & \(<7 \mathrm{mv}\) & \(<100 \mathrm{mv}\) & \(<7 \mathrm{mv}\) & NA & \(<10 \mathrm{mv}\) \\
\hline 2.2 GHz & \(<30 \mathrm{mv}\) & NA & \(<30 \mathrm{mv}\) & NA & \(<30 \mathrm{mv}\) \\
\hline
\end{tabular}

All counters have 8 digit red. \(28^{\prime \prime}\) LED displays. Aluminum cabinet is \(3.9^{\prime \prime} \mathrm{H} \times 3.5^{\prime \prime} \times 1^{\prime \prime}\). Internal Ni-Cad batteries All counters have 8 digit red. \(28^{\prime \prime}\) LED displays. Aluminum cabinet is 3.9 K \(\times 3.5^{\prime \prime} \times 1\). Internal Ni-Cad batteries provide 2.5 hour portable operatıon with continuous operation from AC line charger/power supply supplied. Model
CCB uses a 9 volt alkaline battery. One year pats and labor guarantee. A fult tine of probes, antennas, and accessories CCB uses a 9 volt alkaline battery. One year pants and labor guarantee. A fult tine of probes, antennas, and accesso IS available. Orders to U.S, and Canada add \(5 \%\) to total ( \(\$ 2\) min, \(\$ 10 \mathrm{~m}\)
COD fee \(\$ 3\). Forergn orders add \(15 \%\). MasterCard and VISA accepted.

Orders to U.S. and Canada add 5\% to total ( \(\$ 2 \mathrm{~min}\), \(\$ 10\) max). Florida residents, add \(6 \%\) sales tax. COD tee \(\$ 3\) Foreign orders add \(15 \%\). MasterCard and VISA accepted.

\section*{OPTOELECTRONICS /NC.}

5821 N.E. 14th Avenue - Fort Lauderdale, Florida 33334 1-800-327-5912 FL (305) 771-2050 FAX (305) 771-2052
not what you had in mind. The reason that you're hearing the station is because the RF is being picked up by one of the early stages of your amplifier-usually one of the preamp sections, such as the phono input, that has lots of gain.

Check all the cables you have attached to the amplifier inputs to be sure that you don't have a broken ground wire. If you've still got a problem, try bypassing the inputs with small silver-mica capacitors. A good value to start with is 10 pF , but you can use a higher value if the radio station doesn't disappear completely. Don't go much over 470 pF because, above that, you'll be starting to filter out some of the audio. You'll know when that's happening because the high frequencies will be the first to go.

Keep the capacitor leads as short as possible or you'll be making the problem even worse. As a matter of fact, solder the leads right on the lugs of the connector inside the amplifier-and don't forget to turn off the power before you open the case. To be on the safe side, unplug the amplifier from the wall as well as turning it off.

\section*{VCR CONVERSION}

I recently returned from a posting in England, and I brought back a VCR that I bought there. The machine is set to work off 240 volts at 50 cycles, so I can't use it here. Since it's a really good VCR without many hours of use, can you give me an easy way of converting it to work here in the USA?-C. Meyer, Washington, DC
Aside from ripping out the entire guts of the machine, and replacing them with Americanstandard parts, there is no simple solution. Not only are the power requirements different, but the electronics in the machine are designed to work with the English PAL video standard, and not the American NTSC standard. To put it mildly, the two are somewhat different. It would actually be a lot simpler and cheaper to go out and buy the VCR that you need, rather than try to modify one type of VCR to work with the other format.

\title{
What's better than speed reading? speed Learning.
}

Speed Learning has replaced speed reading. It's a whole new way to read and learn. It's easy to learn...lasts a lifetime... applies to everything you read. It may be the most productive course you've ever taken.

Do you have too much to read and too little time to read it? Do you mentally pronounce each word as you read? Do you frequently have to go back and reread words, or whole paragraphs, you just finished reading? Do you have trouble concentrating? Do you quickly forget most of what you read?

If you answer "Yes" to any of these questions - then here at last is the practical help you've been waiting for. Whether you read for business or pleasure, school or college, you will build exceptional skills from this major breakthrough in effective reading, created by Dr. Russell Stauffer at the University of Delaware.

> Not just "speed reading" - but
> speed reading - thinking -
understanding - remembering and - learning
The new Speed Learning Program shows you, step-by-proven step, how to increase your reading skill and speed, so you understand more, remember more and use more of everything you read. The typical remark from over one million people taking the Speed Learning program is, "Why didn't someone teach me this a long time ago." They were no longer held back by their lack of skills and poor reading habits. They could read almost as fast as they could think.

\section*{What makes Speed Learning so successful?}

The new Speed Learning Program does not offer you a rehash of the usual eye-exercises, timing devices, and costly gadgets you've probably heard about in connection with speed reading courses, or even tried and found ineffective.

In just a few spare minutes a day of easy reading and exciting listening, you discover an entirely new way to read and think - a radical departure from anything you have ever seen or heard about. Speed Learning is the largest selling self-study reading program in the world. Successful with Fortune 500 corporations, colleges, government agencies and accredited by 18 professional societies. Research shows that reading is \(95 \%\) thinking and only \(5 \%\) eye movement. Yet most of today's speed reading programs spend their time teaching you rapid eye movement ( \(5 \%\) of the problem), and ignore the most important part, (95\%) thinking. In brief, Speed Learning gives you what speed reading can't.

Imagine the new freedom you'll have when you learn how to dash through all types of reading material at least twice as fast as you do now, and with greater comprehension. Think of being able to get on top of the avalanche of newspapers, magazines and correspondence you have to read...finishing a stimulating book and retaining facts and details


\section*{FOR FASTER SHIPMENT CALL 1-800-729-7323 OR FAX 1-609-273-7766}
more clearly, and with greater accuracy, than ever before.

\section*{Listen - and learn at your own pace}

This is a practical, easy-to-learn program that will work for you - no matter how slow a reader you think you are now. The Speed Learning Program is scientifically planned to get you started quickly...to heip you in spare minutes a day. It brings you a "teacher-on-cassettes" who guides you, instructs, and encourages, explaining material as you read. Interesting items taken from Time Magazine, Business Week, Wall Street Journal, Money, Reader's Digest, N.Y. Times and many others, make the program stimulating, easy and fun... and so much more effective.

\section*{*Special Engineering Edition}

This special edition includes the basic Speed Learning program plus a supplement that focuses on the type of reading you do every day. After you've mastered the basics, you'll advance to the Science/Engineering supplement, where you'll apply your new skills to reading materials and exercises taken from professional publications in your field.

\section*{Examine Speed Learning \\ RISK FREE for 15 days}

You will be thrilled at how quickly this program will begin to develop new thinking and reading skills. After listening to just one cassette and reading the preface, you will quickly see how you can achieve increases in both the speed at which you read, and in the amount you understand and remember.

You must be delighted with what you
see, or you pay nothing. Examine this remarkable program for 15 days. If, at the end of that time you are not convinced that you would like to master Speed Learning, simply return the program for a prompt refund. (See the coupon for low price and convenient credit terms.)

\footnotetext{

\(\square\) YES! I want to try Speed Learning Engineering | Edition for 15 days without risk. Enclosed is the | first of 4 monthly payments of \(\$ 36.25\).* If I am not completely satisfied; I may return it for a prompt refund.
\(\square\) SAVE \(\$ 7.00\) ! I prefer to pay the \(\$ 145.00\) now, | and save the \(\$ 7.00\) shipping \& handling charge. I may still return the program for a full refund.
Method of payment: (Federal Tax Deductible) \(\square\) Check or money order payable to Learn | Incorporated
\(\square\) Charge to: \(\square\) Visa \(\square\) MC \(\square\) AmEx \(\square\) Discover
Card \# Exp.
| Signature


Name
Address

City State___ Zip
- Plus \(\$ 7.00\) shipping and handling. For New Jersey |residents, sales tax will be added.
\(\begin{array}{ll}\text { Radio } & \text { Dept. CA-02, } 113 \text { Gaither Drive, } \\ \text { Electronics } & \text { Mt. Laurel, NJ 08054-9987 }\end{array}\)
}

\title{
LETTERS
}


\section*{CIRCUIT-BOARD SUPPLIES}

A letter from Dr. Barry C. Mears ("Letters," Radio-Electronics, January 1990), referring to Designer's Notebook in the November and December issues, stated that KTI sells only through distributors, and that only one of those distributors sells the "Kodak chemicals" in small quantities.
Kepro Circuit Systems supplies anything and everything for people to produce printed-circuit boards on a prototype or short-run basis. Kepro has been offering KPR products in the form of pre-sensitized CopperClad since 1954, and has been distributing quarts of the KPR-3 Photo Resist, along with all the associated KPR products, since the late 1960's. All of their supplies and products are described in a 32 -page catalog. Kepro's phone numbers are 314-343-1630 in Missouri, or 800-325-3878 out of state.
KEPRO CIRCUIT SYSTEMS, INC. 630 Axminister Drive
Fenton, MO 63026-2992

\section*{SIMPLE CIRCUIT BOARDS}

I would like to comment on "Hardware Hacker" (Radio-Electronics, December 1989). I take exception to some of Don Lancaster's views on creating etched circuit boards.
I have been designing and etching circuit boards-as, I expect, have many of your readers-for over 12 years. I have tried all the available methods, and have read in electronics magazines.
I have found that the quickest method is the direct method using Radio Shack Dry Transfers (276-1577). It works great for singlesided boards as long as you burnish the design when finished.

One of the "stupid" (according to Don Lancaster) things that I do is to use ferric chloride, also from Radio Shack. I seem to have no problem producing clean, sharp traces.

The only problem I run into using that method is that as soon as I finish and have the board in its enclosure, my friends all want duplicate boards so they can build the same project, so I'd have to start all over again. Not on your life! Instead I use the second method, which is to screen print the board and make two or three extras.

With the proper registration I can produce single- or doublesided boards with excellent results. The second "stupid" thing that I do is to etch the boards with the resist side up in a glass or plastic container. I have never yet had a board come out bad. The only time they've been bad is when l've flipped the board resist-side down and the resist has become scratched and left a gap in the traces.
If any of your readers are interested, I have available an instructional video tape that shows the hows and whats of screen-printing circuit boards. For information, send an SASE to:
FRED AYRES
4423 West 69
Brooklyn, OH 44144

\section*{PROBLEM-FREE PC BOARDS}

One of the features that I always look forward to reading in RadioElectronics is "Hardware Hacker," but after reading that column in the December issue I must protest. Don Lancaster's diatribes will certainly scare away more printed-circuit-board makers than create them.

Mr. Lancaster must have had some bad experience making PC boards by the direct method, but the method is not (as he says) "... more hassle than it is worth, and ends up just about totally worthless." I have made many circuit boards, all by the direct method, and have not had a single failure. All are one-of-a-kind, and were made in a lot less time than if I had used any of his recommended alternative methods. Contrary to what Mr. Lancaster says, one problem is to get the pattern on the copper with something that will truly resist the etching solution. Fingerprints, etc., won't hack it. I've had bad results on test pieces from the commercial inking pens and ended up using shellac tinted with an organic dye. It is cheap, easy to use, and easy to clean off the boards.

Mr. Lancaster says that at one time ferric chloride was used as the etchant. Ferric chloride is still being used by the majority of modern commercial circuit-board manufacturers-and by me. It is efficient and has an indefinite storage life, even though it does stain. From what I have read, ammonium persulfate has a short life and must be purchased from new stocks.

Scrubbing circuit-board material at 2 minutes per square inch is a ridiculous waste of time. A few seconds with a kitchen sponge and Comet cleanser does the job very well. I almost always etch boards face-up, unless I am reusing some old solution and the volume is not enough to cover the board very well. (And, when I make a double-sided board, one side necessarily will be face up.) I etch the boards in rectangular Pyrex baking dishes. I find that if the solution is kept moving, there


\section*{ELENCO PRODUCTS AT DISCOUNT PRICES}


35MHz Dual Trace Oscilloscope \(\$ 495\)
M0-1252
- High luminancé \(6^{\prime \prime}\) CRT - 1 mV Sensitivity
- 6KV Acceleration Voltage
-10ns Rise Time
- X-Y Operation - Z Axis
- Delayed Triggering Sweep

Top quality scopes at a very reasonable price. Contains all desired features. Two \(1 \times, 10 \times\) probes, diagrams and manual. Two year guarantee.

is no problem at all doing it face up.
I haven't had any direct experience with sensitized boards, but friends have sensitized their own boards and had satisfactory results. They say it was simple, and there were no problems. I have two board designs that I want to make about 60 boards from, and I hope to do it with silk screenotherwise it will be with commercially sensitized boards.
KENNETH E. STONE
Cherryvale, KS

\section*{COMPARING CD PLAYERS}

The "Audio Update" column in the December 1989 issue of RadioElectronics left the reader with the impression that all CD players sound the same and the only important thing to consider when selecting a player is the features. While Larry Klein did state that in the ABX test conducted in Stereo Review, all of the players were in the \(\$ 750-\$ 2500\) price range, an important point that was not empha-

\section*{CORRECTION}

In Fig. 2, in the "RGB-to-NTSC Converter" story (Radio-Electronics, December 1989), the junction of XTAL1 and C3 should not be connected to any other components. In Fig. 5, the video output connector pins were mislabeled. Pin 1 should be 4,5 should be 8 , and 9 should be 12 . Incidentally, the circuit will not run with EGA.
sized. I agree that when comparing CD players in a particular price range they will all sound essentially alike. However, a "top-of-theline," \(\$ 1500\) unit will always sound different (i.e., better) than a \(\$ 300\) model. That is due to several fac-tors-probably the most important is that the \(\$ 1500\) model most likely will use dual digital-to-analog convertors ( 18 bits or more) with at least \(8 \times\) oversampling, while the \(\$ 300\) model probably will use a single \(\mathrm{D} / \mathrm{A}\) convertor ( 14 or 16 bits) with only \(2 \times\) oversampling.

Even the casual listener would be able to differentiate between the two players.

I thought that point needed to be brought up. I enjoy Mr. Klein's column.
DWAYNE ROSENBURGH
Elkridge, MD

\section*{ETCHING-TANK TIPS}

First I'd like to say that I enjoy Radio-Electronics very much. I'd like to suggest a better way of working the Plexiglas material used in the article "Make Your Own Etching Tank" (Radio-Electronics, December 1989). If you cut the plastic as described in the article, you probably found out that a considerable amount of filing or sanding was needed to produce the square edge needed for a good solvent-weld joint. The "score-and-break" cutting method is perfectly fine if you are making plastic window panes, but it makes a messy edge for solventwelding purposes.

The remarks in the article about

sawing the material are true--but the problem is easy to overcome. To make a good solvent-welding joint, the smoother the cut the better. The smoothest cutting line can be accomplished by sawing with a very fine-tooth blade in a power saw with a rip fence. The melting problem can be overcome by keeping it cool with water. Don't worry about being electrocuted; you only need a little water, not a garden-hose full. A pump-spray bottle will do fine. The surface of the Plexiglas need only be kept wet enough so that a small puddle stays around the saw blade or drill bit. Be sure not to push the saw too hard-let the saw do the work

That cutting method will create an edge that requires a lot less filing for a good welding surface and a water-tight joint.
STUART D. HARDEE
Loris, SC

\section*{WHEN LESS IS MORE}

I would like to comment on Michael Catudal's letter ("Letters," Radio-Electronics, December 1989). While I agree with Mr. Catudal that your magazine should feature more articles on new technology, especially some of the newer chips, I disagree that all of the featured projects should be based on the latest state-of-the-art technology.

Many years ago, when I was an engineering student, I remember a professor saying that an engineer's task will be to find the minimum of means that will solve the problem. As an example, he said, anyone could send out a 16 -ounce hammer for a crew to use to drive carpet tacks-but an engineer would be expected to send out the lightest hammer that could do the job. My boss would really think I was nuts if I used an 80960 with four 27 C 1024 's to solve a problem that an 8039 with a 2716 could handle sufficiently.
Even though I don't build them, \(I\) find many unique and time-saving hints and circuits in most of the projects in Radio-Electronics. I've used many of those circuits, time and time again, in designs. Keep up the good work CHARLES J. MANCUSO

\section*{NEXT MONTH IN Ppular Electoronics}

Exciting Features, Projects, Reports, \& Columns

BUILD A
REACTION TIMER
Use it as a game of skill, or to help you improve your reaction time.
- BUILD A CUSTOM SECURITY SYSTEM
An expandable, adaptable alarm that can be used to protect your home, car, or boat.

\section*{THE TRANSFORMERLESS} POWER SUPPLY
High-voltage output, highcurrent capacity, and no bulky transformer.

\section*{- REVIVING A RELIC}

Can't afford a new top-of-theline SW receiver? Then get almost-as-good performance with one of yesterday's workhorses.

\section*{Popular Electronicies}

ON SALEFE
\(\qquad\)

\section*{And there is more!}

\section*{PRODUCT REVIEWS-Yamaha}

TX-1000U AM/FM Stereo Tuner, Au-dio-Technica ATH-909 Stereo Headphones, and much more.
DX LISTENING—Shortwave fare from our northern neighbors.
COMPUTER BITS——Pushbutton computing comes to the PC.

CIRCUIT CIRCUS—infrared re-mote-control circuits for any application.
HAM RADIO-Can't find a tuning coil for a special project? Then why not make your own!
SCANNER SCENE—Scanning above 800 MHz .

\title{
EQUIPMENT REPORTS
}

there is no question that prototyping requires organization. While engineers are seldom noted for neatness, they'll be the first to acknowledge the importance of making a neat prototype. There's a simple reason for that: When the circuit doesn't work the first time, a clean prototype is much easier to troubleshoot.
If, despite your best intentions, your circuit prototypes seem to always end up in a tangled mess, you might need some help from the Wishmaker I/ Digital Prototype Design Station from Jameco Electronics (1355 Shoreway Road, Belmont, CA 94002).
The Wishmaker I/ combines a breadboard with power supplies, test equipment, and more in a convenient and portable package. The entire package is housed in a square, briefcase-like plastic case that measures \(131 / 2 \times 14 \times 43 / 4\) inches. The case opens to reveal a large, removable solderless breadboard with more than 3500 tie points. Above the breadboard is a sloped panel containing various test and measurement equipment. The case top, which is removable, holds a box of assorted stripped and pre-formed jumpers, and a set of test leads.

The Wishmaker I/ offers four separate power supplies. Fixed supplies deliver +5 volts at 3 amps and -5 volts at 500 milliamps. Variable supplies deliver +1.2 yolts to

\section*{Jameco Electronics Wishmaker II Prototype Design Station \\ A portable, self-contained prototyping station to make your design wishes come true! \\ CIRCLE 38 ON FREE INFORMATION CARD}
+15 volts and -1.2 volts to -15 volts at 500 milliamps.

\section*{Built-in testing}

The output of the supplies, or the output of any circuit you build, can be monitored using several built-in test instruments. For example, an analog multimeter can measure DC and AC volts ( 250 volts maximum), DC current ( 250 milliamps maximum) and resistance.

Your circuits can also be monitored with the built-in logic probe; red, green, and yellow LED's indicate logic highs, lows, and pulses. Input to the probe can be provided to either a tie-point socket or to a test probe.

A three-digit frequency counter can measure signals to 999 MHz in three ranges. Input to the probe is provided to a tie-point socket.

Two BCD-to-7-segment decoder/drivers are provided to display the outputs of digital circuits. Binary inputs are automatically converted for display on 7 -segment LED's. While such a circuit would be easy enough to build on the breadboard, its inclusion on the top panel helps to keep the breadboard clutter to a minimum.

Along with the monitoring equipment, Wishmaker // provides several devices to provide inputs for your circuits. The simplest is a bank of eight 3 -way toggle switches, that can be manually switched to provide high, low, and
floating inputs. The switches are arranged so that in the "up" position, the output is high, and so on. However, to monitor the outputs, you might want to use the eight LED display drivers. The bi-color LED's turn red with a high level is presented to their inputs, and green when a low is presented.

The Wishmaker I/ can also provide pulses to your circuits. Two pulse switches provide debounced pulses. Each switch has two outputs, one normally low, and the other normally high; pressing the switch causes the low output to go momentarily high, and vice versa. A pulse generator provides \(50 \%\) duty-cycle pulses. Seven discrete frequencies are available, ranging from 1 Hz to 1 MHz .

A signal generator provides sine, square, and triangle outputs from 1 Hz to 100 kHz in 5 ranges. Unlike the pulse generator, the output is continuously adjustable. The exact output frequency can, of course, be measured with the built-in frequency counter.

If any of the circuits you design on the Wishmaker I/ need to be connected to a computer, a set of DB-25 connectors makes it easy. One connector, on the side panel of the unit, is internally connected to another DB-25 on the front panel. Jumper wires can easily bring the appropriate signals to the breadboard.

The Wishmaker II is an wish come true for engineers, technicians, hobbyists, and students. Besides being an excellent prototyping tool, it would be an excellent teaching tool in an electronics lab course. The Wishmaker II is priced at \(\$ 249.95\). A similar device, the \(\$ 199.95\) Wishmaker I analog prototype design station. The Wishmakeri does not offer the frequency counter, pulse generator ordebounced pulse switches, but does add a speaker and 4 potentiometers.

\title{
WITH CIE, THE WORLD OF ELECTRONICS CAN BE YOUR WORLD, TOO.
}


Look at the world as it was 20 years ago and as it is today. Now, try to name another field that's grown faster in those 20 years than electronics. Everywhere you look. you'll find electronics in action. In industry, aerospace, business, medicine, science, government, communicationsyou name it. And as high technology grows, electronics will grow. Which means few other fields, if any, offer more career opportunities, more job security, more room for advancement-if you have the right skills.

\section*{SPECIALISTS NEED SPECIALIZED TRAINING.}

It stands to reason that you learn anything best from a specialist, and CIE is the largest independent home study school specializing exclusively in electronics, with a record that speaks for itself. According to \(\alpha\) recent survey, \(92 \%\) of CIE graduates are employed in electronics or a closely related field. When you're investing your time and money, you deserve results like that

\section*{INDEPENDENT STUDY BACKED BY PERSONAL ATTENTION.}

We believe in independent study beccuse it puts you in a classroom of one. So you can study where and when you want. At your pace, not somebody else's. And with over 50 years of experience. we've developed proven programs to give you the support
such study demands. Programs that give you the theory you need backed with practical experience using some of the most sophisticated electronics tools available anywhere, including our Microprocessor Training Laboratory with 4 K of random access memory. Of course, if you ever have a question or problem. our instructors are only a phone call away.


\section*{START WHERE YOU WANT, GO AS FAR AS YOU WANT.}

CIE's broad range of entry. intermediate, and advanced level courses in a variety of career areas gives you many options. Start with the Career Course that best suits your talents and interests and go as far as you want-all the way, if you wish, to your Associate in Applied Science Degree in Electronics Engineering Technology. But wherever you start, the time to start is now. Simply use the coupon below to send for your FREE CIE catalog and complete package of career information. Or phone us, toll-free, at 1-800-321-2155 (in Ohio, 1-800-523-9109). Don't wait, ask for your free catalog now. After all, there's a whole world of electronics out there waiting for you.


Cleveland Institute of Electronics, Inc. 1776 East 17 th Street, Claveland, Ohio 44114

Member NHSC
Accredited Member Nctional Home Study Council

YES... I want to learn from the specialists in electronics-CIE. Flease send me my FREE CIE school catalog, including details about CIE's Associate Degree program plus my FREE package of home sudy information.
Name (print):
Address:
\begin{tabular}{|c|c|c|}
\hline City: & \multirow[t]{2}{*}{State} & \multirow[t]{2}{*}{Zip} \\
\hline Age & & \\
\hline
\end{tabular}

Check box for G.I. Bill bulletin on educational benefits: \(\square\) VeteranActive Duty

MAIL TODAY!

ow you can train at home in your spare time for a money-making career as a TV/VCR Repair Specialist. o need to quit your job or school. We show you how to troubleshoot and repair videocassette recorders and TV sets, how to handle house calls and shop repairs for almost any make of television or VCR. You learn about TV receivers, tuners and antennas, X-ray emission, the characteristics of sound, how electrical impulses are converted into a TV picture, and much, much more. Tools are included with your course so you can get "hands-on" practice as you follow the lessons step by step. Send for free facts about opportunities in TV/VCR Repair and find out how you can start making money in this great career.

Experts show you what to do, how to do it...guide you every step of the way! Everything is explained in easy-to-understand language with plenty of drawings, photos and diagrams. But if there is ever anything in your lessons you don't understand, you can write or phone your instructor and you can count on getting an authoritative answer. Send for free facts and color brochure. No cost. No obligation. No salesman will vis.

MAIL COUPON TODAY
F-1 SCHOOL OF TV/VCR REPAIR, Dept. DEO2 925 Oak Street, Scranton, PA 18515
| Please send me free facts on how I can learn TV/VCR Repair at home in my spare time. No salesman will visit.



FOR MEASURING THE RESPONSE OF AN audio amplifier, finding the resonant points of a filter network, or examining any system that operates over a broad frequency range, nothing beats the combination of an oscilloscope and sweep generator. That point was driven home recently when we had the opportunity to examine the FG3A, a new sweep function generator from Beckman Industrial Corporation, 3883 Ruffin Rd., San Diego, CA 92123-1898).

The FG3A can provide sine, square, triangle, and ramp signals in seven ranges from 0.2 Hz to 2 MHz . A pulse output, at either TTL or CMOS levels (or anywhere in between) is also available. Any of the outputs can be swept either linearly or logarithmically throughout the entire range, or any portion of it. An external VCF or Voltage-controlled frequency jack allows an external signal to vary the frequency of the output; A 0-10 volt signal causes a 1000:1 change in frequency. The selected output can also be amplitude- or frequency-modulated by an internal or external signal.

The output amplitude of the FG3A is 20 volts p-p into an open circuit, or 10 volts \(p-p\) into a 50 ohm load. The duty cycle of the outputs are continuously adjustable from 1:1 to 10:1.

The frequency of the output is displayed on the built-in 5-digit frequency counter. That counter sports an external input, and can be used to measure external signals of up to 10 MHz .

The FG3A is ruggedly built in a \(9 \times 3 \times 13\)-inch shielded plastic case and weighs about \(41 / 2\) pounds. The front panel features an intelligent layout that is dominated by

Jhe 5-digit LED display. Switches are grouped according to function, which makes the unit very easy to operate.

\section*{Using the sweep generator}

Although the sweep function generator is not one of the most popular test instruments, it is an extremely versatile one. The most common application is measuring the frequency response of amplifiers, filters, and other networks. That task is performed by feeding the output of the generator to both the network under test to one oscilloscope channel. The output of the network is fed to the other scope channel.

If, for example, you were testing an audio amplifier, the sweep generator would be set up to provide sine waves in the audio-frequency range, and the scope would be set to display both the input and the output. At a glance, you would see the response of the amp over the entire operating range

Using the same technique, it is a simple matter to determine the resonant point of filter networks. Carrying that a bit further, it's possible to identify the value of an unmarked inductor or capacitor, even without an LC meter. Assuming you know the value of one of the components, you can set up a simple LC network and manually sweep the generator for a null. Knowing the resonant frequency and the value of one of the components, simple arithmetic will yield the value of the unmarked part

The \(F G 3 A\) is a unit that has the look, feel, and performance that you might not expect from a \(\$ 475\) sweep function generator. We congratulate Beckman on a job well done.

R-E

\title{
TEST METHODS
}

\section*{MIKE ROGALSKI}

\section*{Easy impedance measurements}

IMPEDANCE MEASUREMENTS OFTEN CONjure up an image of complex test equipment and tricky calculations involving at least a square root or two. However, none of that is necessary if you understand a relationship that exists between impedance and decibels.

That relationship is this: If you cut your load impedance in half, the output of the circuit drops by 3 dB . Using that knowledge, it's easy to design a simple piece of test equipment that will give you the AC impedance of a circuit, and all you need is a potentiometer, a switch, and a VOM having resistance and decibel scales. Switching between the dB- and DC-resistance readings will yield the effective AC impedance of a circuit at a given frequency.


FIG. 1-THE EFFECTIVE AC IMPEDANCE of a circuit can be determined using this circuit.

Figure 1 shows the simple test circuit, which is a simplification of the Wheatstone bridge used in complex impedance-measuring equipment. To use it, connect the two test probes, A and b , across the circuit under question. Then take a relative reading on the dB setting of the meter with the potentiometer out of the circuit (Sl open). If possible, make the circuit's output as high as you can in order to make the reading as accurate as possible. Next, place the potentiometer in the circuit (close S 1 ) and adjust it to a point where the meter reads 3 dB lower than the first reading. Without changing the setting of R1, disconnect the circuit under test and measure the DC resistance of the potentiometer; it will be the equivalent \(D C\) resistance of the AC circuit at the frequency used during the test. You may want to take several readings at different frequencies.

\section*{Troubleshooting potentiometers}

There is a unique way to check a potentiometer's wiper for continuous contact on the resistive element. The circuit shown in Fig. 2 enables you to place a potentiometer in an audio-operating environment so you can hear how it affects an audio signal without the distraction of the music itself. The circuit is particularly useful in recording studios, where audio faders tend to get a lot of wear and tear, but it is equally useful in other situations.


FIG. 2-A POTENTIOMETER can be checked out using this simple test circuit.

The principle behind the circuit is very simple: A DC voltage is applied to the potentiometer in question, and the wiper is moved back and forth at a steady rate. Whenever there is a "dirty" spot on the potentiometer, the DC circuit is interrupted, and a spike appears at the output of the circuit and is fed into a mini-amplifier. The audible signal from the amplifier indicates where the dirt or defect is on the potentiometer, which can then be cleaned or repaired if possible. The trick to the circuit is the output capacitor. While there is only an uninterrupted DC source, there is no signal coupled to the audio amplifier. When the DC voltage is interrupted, the capacitor sees the interruption as an AC signal and passes it to the amp as a pop.

The DC voltage from the battery generally will not burn out wirewound potentiometers, but some car-bon-composition potentiometers could be affected. To be safe, calculate how much current you anticipate through the circuit and choose a series resistor that will limit the current to \(1 / 4\) of the device's power rating. That will keep the battery from destroying the component you are testing.

R-E

\section*{TALK IS CHEAP.}

Have you heard? For less than \(\$ 90\) your AT or XT-compatible computer can talk! All it needs is the HV-2000 Computer Voice Kit from Heathkit.

Reading letters, transcriptions and computerized instruction can be easier and quicker than you ever thought possible. Computer games gain a new dimension. Your computer can even entertain children with stories


Computer Voice will allow your computer to recite reference and research information from timesharing services. Or, speak radio transmitted ASCII information.

The HV-2000 Computer Voice Card, containing speech synthesizer and audio amplifier, plugs into any AT or XT-compatible computer's expansion slot. An external speaker is also included. Versatile. Heathdeveloped software gives you a wide tariety of voices and easy interface to high and low level languages.

The HV-2000 Computer Voice. At less than \(\$ 90\), talk IS cheap. To order, call toll-free 1-800-253-0570. Use your Visa, MasterCard, American Express or Heath Revolving Charge card. Use order code 620-002
For your FREE Heathkit Catalog call 1-800-44-HEATH

\section*{Heath Company}

A subsidiary of Zenith Electronics Corporation
Prices, product availability and specifications are subject to change without notice.

CIRCLE 86 ON FREE INFORMATION CARD

\title{
New Products
}

\section*{ANALOG/DIGITAL STOR-} AGE SCOPES. Besides realtime sampling speeds of up to \(250 \mathrm{MS} / \mathrm{s}\), and analog and digital bandwidths of up to 100 MHz , two analog/digital storage oscilloscopes from John Fluke provide micro-processor-calculated measurements. The \(60-\mathrm{MHz}\), 250-MS/s PM 3355 and the \(100-\mathrm{MHz}_{2} 250-\mathrm{MS} / \mathrm{s}\) PM 3375 (pictured) DSO's are also designed for ease of use, with such features as cursors and full autoset.

The PM 3375 uses repetitive sampling for acquisition of recurrent signals of up to 100 MHz , and has \(100-\mathrm{MHz}\) analog bandwidth and \(150-\mathrm{MHz}\) triggering bandwidth. The PM 3355 has \(60-\mathrm{MHz}\) analog bandwidth and \(100-\mathrm{MHz}\) triggering bandwidth. Both units provide \(250-\mathrm{MS} / \mathrm{s}\) real-time sampling for signals to 25 MHz at 10 samples per second, four 4 K memories for high-resolution acquisition and storage of digital signals, and post-trigger capability of up to 5,000 divisions. Other features include averaging for im-


CIRCLE 25 ON FREE INFORMATION CARD
proved noise suppression and greater accuracy, digitally delayed timebase for in-depth signal examination while troubleshooting, 8-bit vertical resolution, and an envelope mode to track signal variations over time.

Signal analysis is simplified with cursor facilities that allow instant, onscreen measurement with numeric readouts of measured and calculated values, automatically compensating for the probes in use. The autoset feature gives automatic channel selection and setting of amplitude, timebase, and triggering for any input signal. To ensure repeatability and efficiency in routine measurements,

64 front-panel settings can be stored. The front panel on each scope also gives clear information on the sensitivity of both channels as well as timebase and trigger setting, memory status, and a display magnification indicator. Optional RS-232 and GPIB/IEEE-488 interfaces allow the DSO's to be operated under computer control or in automatic measuring systems.

The PM 3355 has a list price under \(\$ 4500.00\); the list price of the PM 3375 is \(\$ 5390.00\). The factory-installed interface options cost \(\$ 500.00\) each.-John Fluke Mfg. Co., Inc., P.O. Box 9090, Everett, WA 98206; Tel. 800-443-5853.

\section*{INFRARED-DETECTOR PEN}

Technicians in the consum-er-electronics repair industry will appreciate the B.I.R.D., a battery-operated infrared-detector pen from Parts Express. The device instantly confirms operation of infrared-emitting products, such as remote controls, VCR tape-stop circuits, and alarm-system infrared detectors. The B.I.R.D.'s slim design makes easy work of reaching IR emitters on crowded VCR boards. An LED conveniently placed in the top of


\section*{CIRCLE 26 ON FREE INFORMATION CARD}
the pen is there to indicate the presence of infrared light in normal light conditions.

The B.I.R.D. infrared detector pen costs \(\$ 55.00\).Parts Express International, Inc., 340 East First Street Dayton, OH 45402; Tel. 800-338-0531.

\section*{WAVEFORM MONITOR/} VECTORSCOPE. Designed with the user's needs in mind, Leader Instruments' model 5872 combination waveform monitor and vectorscope is loaded with features that accommodate video-signal monitoring easily and effectively. It offers simultaneous vector and waveform display and dual-channel display for observation of two video sources on the same screen.

Sweep rates of \(1 \mathrm{H}, 2 \mathrm{H}, 1 \mathrm{~V}\), and 2 V ; and 1 H MAG, 2 H

MAG, 1V MAG, and 2V MAG simplify signal evaluation and measurements. A \(\times 5\) vertical-gain magnifier contributes to high-resolution differential phase and gain measurements in the R-Y mode. Chroma and IRE filters can be inserted on a full-time or line-shared basis, and the selected video source is sent to a pic-ture-monitor output for observation on a color monitor. A switching-mode power supply automatically adapts the unit to a wide range of AC and DC volt-


CIRCLE 27 ON FREE INFORMATION CARD
ages. The instrument is housed in a metal cabinet with a handle and feet for bench use; the cabinet can be removed for rack mounting purposes.

The model 5872 combination waveform monitor/vectorscope costs \$3,795.00.Leader Instruments Corporation, 380 Oser Avenue, Hauppauge, NY 11788.

\section*{MAGNETIC SENSING PRO-} BE. By sensing the presence of magnetic fields, the Lil Devil Mag-Probe from HMC lets you test any electrical/ electronic device for cur-rent-on/-off or glitchesand doesn't require indepth training, schematics, or complicated hookups. The device makes it easy to accurately and safely identify and separate electrical from mechanical problems.
The Lil Devil detects re-


\section*{CIRCLE 28 ON FREE INFORMATION CARD}
sidual magnetism and transient current pulses ("glitches") as fast as 10 milliseconds, and identifies north and south poles in AC- and DC-powered solenoids, relays, and any other devices that use a coil. When the instrument's probe tip is placed close to the coil in the device under test, the LED in the probe's handle lights if the device is energized. If the LED doesn't
light, the device is de-energized. The probe works without having to make a direct electrical connection, unlike an oscilloscope or voltmeter.

Two models are available. The standard-sensitivity model tests large and stan-dard-sized solenoids and relays. The high-sensitivity model tests the full range of devices, from subminiature to the largest, including most reed relays.

The standard- and highsensitivity Lil Devil MagProbes have suggested retail prices of \(\$ 28.50\) and \(\$ 33.75\), respectively.-HUB Material Company, P.O. Box 526, Canton, MA 02021.

DISKETTE I.D. SYSTEM. A computer-disk identification system, the ReMarkAble Label Ssytem from Weber \& Sons, eliminates the build-up of layers of labels on \(51 / 4\) - and \(31 / 2\)-inch floppy disks. Special marker pens are used to write on a thin, self-adhesive, plastic
surface affixed to the disk. As the data on the disk changes, old I.D.information is simply wiped off and updated notes can be added to reflect the changes. Ink removal doesn't require the use of any chemicals, alcohol, or erasers; ink is removed simply by wiping the surface with a dry tissue.

The ReMarkAble Label System Kit is available as the RLS-200, with 200 self-adhesive writing surfaces, or as the RLS-100, with 100 writing surfaces. Each kit also contains one marker pen and instructions.

The RLS-200 and RLS-100 kits cost \(\$ 39.95\) and \(\$ 24.95\),


CIRCLE 29 ON FREEE INFORMATION CARD
respectively, including ship-ping.-Weber \& Sons, Inc., ReMarkAble Label Systems Division, 3468 Highway 9, Freehold, NI 07728; Tel 800-225-0044.

\section*{SPECTRUM ANALYZER/LAP-}

TOP. For true convenience and portability, Rapid System's R355 combination FFT spectrum analyzer and digital scope includes the versatile Toshiba 3200 SX, a 386 laptop personal computer. The complete system allows the user to view both the input signal and its frequency spectrum in real time on the computer. A two-channel, 12-bit, 267-K data buffer; \(500-\mathrm{MHz}\) bandwidth; and \(1-\mathrm{MHz}\) sampling rate are standard features in this turnkey, stand-alone testing system.
The \(16-\mathrm{MHz}, 40-B\) laptop features an IBM-VGA-compatible high-resolution gasplasma display. The combined system offers two channels of simultaneous 1 MHz acquisition with \(32-\mathrm{KB}\)


\title{
Cut Your Video Servicing Time By 54\%
}

With the Market Proven VA62 Universal Video Analyzing System.

Today's VCRs, TVs, and MTS Stereo TVs require a proven method to quickly isolate the defective component. New technology has made simple problem solving a time-consuming and expensive procedure.

A survey of over 1500 Video Analyzer owners has shown that the 'A62's unique signal substitution method has reduced their vide, servicing time by an average of \(54 \%\), and increased their ser icing profits.

You can join the successful service centers that have cut their video servicing time and increased their profits with the VA62 Universal Video Analyzing System. Call for a brochure on the VA62. Call 1-800-SENCORE and increase your profits.
In Canada also call 1-800-SENCOFE.


\section*{Get A Complete Course In}

\section*{ELECTRONIC ENGINEERING}

8 volumes, over 2000 pages, including all necessary math and physics. 29 examinations to help you gauge your personal progress. A truly great learning experience.

Prepare now to take advantage of the growing demand for people able to work at the engineering level

Ask for our brochure giving complete details of content. Use your free information card number, or write us directly. \$99.95, Postage Included. Satisfaction guaranteed or money refunded.


CIRCLE 67 ON FREE INFORMATION CARD

\section*{NOISE REDUCTION} FOR UNDER S10.
MIXING CONSOLES
SWITCHES RAMOUN PLUGS \& JACKS
PATCHBAYS
MICROPHONE CONNECTORS
SNAKE CABLES BATERY CONTACTS \({ }^{\text {SAEAKER TERMIN }}\) TALS
CRAMOLIN.

Even the finest equipment in the world cannot guarantee noise-free operation. One "dirty" connection anywhere in the electrical path can cause unwanted nolse or signal loss.

\section*{"MORE THAN A CONTACT CLEANER"}

CRAMOLIN \({ }^{(1)}\) is a fast-acting, anti-oxidizing lubricant that cleans and preserves all metal surfaces, including gold.
When applied to metal contacts and connectors, CRAMOLIN \({ }^{\text {b }}\) removes resistive oxides as it forms a protective molecular layer that adheres to the metal surfaces and maintains maximum electrical conductivity.
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{CRAMOLIN \({ }^{\text {- - USED BY THOSE WHO DEMAND THE BEST: }}\)}} \\
\hline & & & \\
\hline Boeing & John Fluke Mig. & Motorola & RCA \\
\hline Capitol Records & Mcintosh Labs & NASA & Switchcratt \\
\hline & & & SINCE 1956 \\
\hline \multicolumn{4}{|l|}{CATG} \\
\hline 1175-O Industrial Ave., (P.O. & Box J) - Escondido & 25-0051 U.S & (619) 743.7143 \\
\hline
\end{tabular}


CIRCLE 30 ON FREE INFORMATION CARD
data buifers per channel, 1024-point FFT displayed at a rate of 10 per second, and 10 mV to 50 V per division with user-selectable gain scaling. The menu-driven software and features such as save (autosave) and retrieve data to/from disk make the system easy to use. Spectra can be stored either as magnitude or comples data.

The \(R 355 / 3200\) SX combination spectrum analyzer and laptop PC costs \$8495.-Rapid Systems, Inc., 433 North 34th Street, Seattle, WA 98103.

WIRE STRIPPER. Incorporating a wire stop, a front feed for close-in work, and a wire cutter, Paladin's PA 1115 Mini-Stripax meets all the hobbyist's wire-stripping and -cutting needs. Designed to strip and cut 30 - to 16-gauge solid and stranded wires in a single motion, the tool completely removes the insulation from multiple conductors without touching or nicking the internal wires.


CIRCLE 31 ON FREE INFORMATION CARD

The lightweight and ergonomically designed miniature wire stripper fits into spaces too small for other stripping tools and cuts precisely with minimal
force. Its stainless-steel laminated blades are rated for up to 20,000 strips, and fiberglass-reinforced nylon construction makes it exceptionally rugged. The Mini-Stripax is insulated to 600 volts to protect users from accidental contact with live wires.

The PA 1115 Mini-Stripax wire stripper has a suggested retail price of \$52.95.—Paladin Corporation, 3543 Old Conejo Road, Suite 102, Newbury Park, CA 91320.

AM STEREO-FM STEREO ANALYZER. Using a patented method of generating modulated RF signals, Sencore's SG80 is the industry's first totally integrated, microprocessor-controlled, IEEE-488- and RS-232-compatible AM-stereo (C-


QUAM) and FM-stereo (MPX) analyzer. The digitally accurate instrument produces virtually noise- and harmonic-distortion-free RF, IF, and audio signals.

The SC80 analyzer allows manufacturers and servicemen to thoroughly per-formance-test and troubleshoot AM-stereo/FMstereo receivers for parameters such as sensitivity, selectivity, separation, and pilot threshold. The unit's innovative design includes RF, IF, C-QUAM, MPX, SCA, audio, tunable sweep, and marker generators. Special drive capability allows incircuit troubleshooting, which highly accurate attenuator and impedance matching for 50-, 75-, and 300 -ohm receiver inputs.
The SG80 AM-stereo/FMstereo analyzer-including test leads, manual, simplified operating guide, and " \(100 \%\) Made Right" lifetime guarantee-costs \$3995.Sencore, Inc., 3200 Sencore Drive, Sioux Falls, SD, 57107; Tel. 1-800-SENCORE.

\section*{RADIO FACSIMILE TERMI-} NAL. ACE Communications' \(W X-1000\) is a stand-alone radio facsimile terminal designed to produce hardcopy images from various radio facsimile services-including NOAA weather charts, NFAX, and press


CIRCLE 33 ON FREE INFORMATION CARD
photos. The unit can even receive satellite weather pictures from NOAA, GOES, and METEOR. The \(W X-1000\) requires only audio output from a shortwave receiver or an S-band receiver capable of receiving facsimile signals. The built-in high-resolution, 24pin thermal printer pro-
duces clear, crisp images. It also has the capability to produce gray scale, which is ideal for Automatic Picture Transmission (ATP) by weather satellite.

The \(W X-1000\) radio-facsimile terminal has a suggested retail price of \(\$ 845.00\) - ACE Communications, Inc., 22511 Aspan Street, El Toro, CA 92630-6321; Tel. 800-523-6366.

SOIC CLIP ADAPTERS. Six SOIC clip adapters, designed to provide test points for high-density, sur-face-mounted Small-Outline Integrated Circuits (SOIC), are being offered as kit 5514 from Pomona Electronics. The kit includes one each of the 8 -, 14-, 16-, \(20-, 24\)-, and 28 -pin SOIC clips, all housed in a sturdy plastic case that is fitted with a contoured-foam interior to separate the enclosed adapters. The SOICclip test adapters securely hold both wide- and nar-


\section*{CIRCLE 34 ON FREE INFORMATION CARD}
row-body SOIC's. Access pins are 0.025 -inch-square gold-plated pins on 0.100 centers, and SOIC contacts are also gold plated

The model 5514 SOIC clip adapter kit costs \$54.50.ITT Pomona Electronics, 1500 East Ninth Street, Pomona, CA 91766.

SOLDERING IRONS. Designed for soldering large components, two soldering irons from M. M. Newman feature oversize heating elements and tips to provide greater thermal inertia.

Antex CS and XS soldering irons have 0.178 -inch diameter heating elements and big, iron-plated coppertips. They both feature removable finger supports.
With its heating element located directly under its tip for optimum thermal efficiency, the 17 -watt \(C S\) is as powerful as a conventional 35 -watt iron. The 25 -watt model \(X S\) is comparable to a standard 40 -watt iron.

The Antex CS and Antex \(X S\) soldering irons have suggested list prices of \(\$ 18.95\) and \(\$ 21.95\), respectively.-


CIRCLE 35 ON FREE INFORMATION CARD
M. M. Newman Corporation,

24 Tioga Way, P.O. Box 615, Marblehead, MA 01945 . R-E

\section*{Train at Home to be an Electronics Technician!}

Professional training and equipment can help you qualify for a dynamic, high-paying career in your spare time.
As the demand for computers and microprocessors in business and manufacturing continues to grow, so does the need for qualified technicians. It's not unusual for experienced technicians to earn from \(\$ 35,000\) to more than \(\$ 40,000\) a year.* Now there's a way you can train for this exciting field without interrupting your job or home life.
```

Choose From These Programs of Study

- Electronics \& Microprocessor Technology
- Industrial Electronics \& Microprocessor Technology
- Computer Servicing \& Electronics Technology
- Specialized Associate Degree In Electronics Technology
You Get Professional Equipment For Professional Training

```

Depending on the program you select, you'll perfect your skills using this advanced equipment, included in the price of tuition:
- Zenith Data Systems caZy Personal Computer
- Digital Multimeter
- Digital Logic Probe
- Elenco Oscilloscope

\section*{Exclusive Extras That Enhance Your Training}

Peoples College introduces some training firsts to make your learning experience more complete:
- Accelerated Learning System - a scientifically proven study system that lets you leam faster and easier than ever before.
-Optional One-Weck Seminar - available with our advanced programs. Conducted on our campus near Orlando, Fla. Not required for graduation, but a valuable opportunity to fine tune your skills with personal guidance.
- Video Tutor Training Tapes - give you a permanent, visual record of informative lectures and close-up demonstrations.
- Experience Labs - professionally designed experiments that give you handson "bench" experience.
- Industry Certification Training Guide provided with three of our programs. Gives you first-hand insight into the examination you may take for your professional license.


Managing to Get Ahead


Test yourself with this sample question:

> Which one of the following questions may you ask a prospective employee in a job interview?
> (1) Do you own or rent your home? (2) Are you married?
> (3) Are you able to work overtime?
> (4) Have you ever been arrested?
> (5) All of the above?

Now wouldn't you like to test yourself against the real thing?
If you've got the experience and knowledge it takes to get the job done, you can get certified in professional service management. The Certified Service Manager exam is offered through NESDA for owners or service managers with a minimum of 4 years of experience.

For a practice test and more information about CSM Certification, write to NESDA, 2708 W. Berry St., Fort Worth, TX 76109-2356, or phone (817) 921-9061.
( \(\%\) : (IIMSN甘)

\section*{CABLE - TV}

\section*{SIGNAL REMDVERS}
-FOR ELIMINATION OF SEVERE INTERFERENCE
-FOR "CENSORING" OF ADULT BROADCASTS

\begin{tabular}{|c|c|c|c|c|c|}
\hline MOOEL & \[
\begin{aligned}
& \text { YUNING } \\
& \text { AANGE }
\end{aligned}
\] & \[
\begin{aligned}
& \text { FOA } \\
& \text { CHANNELS }
\end{aligned}
\] & Passband & PRICE & SHIPPING \\
\hline 23H & 50.66 MHz & 2.3 (or 6 meter ham) & 50.300 MHz & \$30 & \multirow{5}{*}{\[
\begin{gathered}
\text { NO } \\
\text { SHIPP } \\
\text { or } \\
\text { or } \\
\text { CHARGES }
\end{gathered}
\]} \\
\hline 46 FM & 66.108 MHz & 4.5 .6 (or any FM) & 50.300 MHz & \$30 & \\
\hline 1417 & 120.144 MHz & 14(A) 15 (B) 16 (C) 17 (D) & 50.400 MHz & \$30 & \\
\hline 1822 & 144.174 MHz & 18(E) 19(F) 20(G) 21 (H) 22 (I) & 50.400 MHz & 830 & \\
\hline 713 & 174.216 MHz & 7.8.9.10.11.12.13 & 50.400 MHz & \$30 & \\
\hline
\end{tabular}

3 for \$75-10 for \$200-mix or match
CALL TOLL FREE FOR C.O.D. OR SEND CHECK TOORDER FAST DELIVERY
30 DAY MONEY BACK GUARANTEE (3FILTERLIMIT)

\section*{Star Circuits}

\section*{P. O. Box 94917}

Las Vegas, NV 89193-4917
\[
1-800-433-6319
\]

SK CROSS-REFERENCE GUIDE. Thomson Consumor Electronics' Sk Replacement Semiconductor number Guide (SKG202F) contains more than 3370 parts, including 228 recently introduced semiconductors. Its 329-page cross-reference section contains references to more than 217,000 original devices.


The SK devices cover a wide variety of both discrete components and integrated circuits with consumer as well as industrial applications. The guide contains expanded specifications in the discrete devices charts. Included in the SK line are thyristors, rectifiers, optoelectronics, microprocessors, and many other types of devices, all under warranty for one year.

The SKReplacement Semiconductor Guide (SKG202F) is available from Thomson distributors na-tionwide.-Thomson Consumer Electronics, Distributor and Special Products, 2000 Clements Bridge Road, Depiford, N) 08096-2088.

DATA ACQUISITION AND CONTROL. Volume 21 of MetraByte's product handbook includes comprehensive data on the company's complete line of data-acquisition, industrial-control and -monitoring, videoimaging, signal-conditioning, personal-instru-


CIRCLE 37 ON FREE INFORMATION CARD
mentation, and communications products for IBM PC/XT/AT, PS/2, and Apple Macintosh II microcomputers. The 304 -page color handbook leatures complete technical data on MetraByte's brand new WORKHORSE line of highspeed industrial-control and -monitoring products. Also included are the PCIPSCOPE, a single-board digi-tal-sampling oscilloscope; the DAS-HRES, a 16-bit dataacquisition board; the VOS/ DVOS software, an Iconbased user interface for MetraByte's image-processing hardware; and the MBIC family of 19 -inch rackmounted IBM-compatible industrial computers. Product characteristics are presented in easy-to-use quickselection guides, followed by complete technical and pricing information.

The Volume 21 catalog is available at no charge.MetraByte Corp., 440 Myles Standish Blvd., Taunton, MA 02780 .


\title{
Discover Your Career Potential In The Fast Growing Field Of High-Tech Electronics!
}

\author{
CIE Gives You The Training You Need to Succeed... At Your Own Pace...\& In Your Own Home!
}

If you're anxious to get ahead ... and build a real career...you owe it to yourself to find out about the Cleveland Institute of Electronics!
CIE can help you discover your career potential in the fast growing field of high-tech electronics. A career that will challenge and excite you every day ...reward you with a powerful feeling of personal accomplishment.. and deliver a level of financial security you may have only dreamed of before!
As the leading school in home-study electronics, CIE has helped over 150,000 students in the U.S.A. and over 70 foreign countries get started in this exciting field. To find out how CIE could be helping you...read on...then send for a CIE catalog TODAY!

\section*{A Growing Need For \\ Trained Professionals!}

The career opportunities shown here are only a few of the challenging, highpaying careers you could enjoy as an electronics technician.

You could be the "brains" behind the scenes of an exciting TV broadcast. trouble-shoot life-saving medical equipment...design exotic new aeronautics systems...ClE's job-oriented programs offer you the quickest possible path to the career of your dreams! And CIE also features military and union re-training, to build on what you already know.

\section*{Dozens Of Fascinating Careers To Choose From!}

Even if you aren't sure which career is best for you, CIE can get you started with core lessons applicable to all areas of electronics. As you advance, CIE makes job opportunities available to you through the bimonthly school paper, The Electron.


\section*{Personal Training From A Renowned Faculty.}

Unlike the impersonal approach of large classroom study, CIE offers you one-on-one instructional help 6 days a week, toll-free. Each CIE lesson is authored by an independent specialist, backed by CIE instructors who work directly with you to answer your questions and provide technical assistance when you need it.


\section*{Send For Your Catalog Today!} stages. And CIE is the only schol that awa for fast study, which can save you thousands of dollars in obtaining the same electronics education found in four-year Bachelor's Degree programs! Write for details today

Cleveland Institute of Electronics, Inc
1776 East 17th St., Cleveland, Ohio 44114
ARE-163
\(\square\) YES! Please send me your independent study catalog (For your convenience, CIE will have a representative contact you-there is no obligation.)


\section*{Practical Training... At Your Own Pace.}

Through CIE, you can train for your new career while you keep your present job. Each course allows a generous completion time, and there are no limitations on how fast you can study. Should you already have some electronics experience, CIE offers several courses which start at the intermediate level.

\section*{"State-0f-The-Art" Facilities \& Equipment.}

In 1969, CIE pioneered the first electronics laboratory course, and in 1984, the first Microprocessor Laboratory. Today, no other home study school can match CIE's state-of-the-art equipment. And all your laboratory equipment is included in your tuition cost. There is no extra charge-it's yours to use while you study at home and on the job after you complete your course!

\section*{Earn Your Degree To Become A Professional In Electronics!}

Every CIE course you take earns you credit towards the completion of your Associate in Applied Science Degree, so you can work towards your degree in

\author{
,
}


FREE CATALOG OF HARD-TO-FIND TOOLS is packed with more than 2000 quality items. Your single source for precision tools used by electronic technicians, engineers, instrument mechanics, schools, laboratories and government agencies. Also contains Jensen's line of more than 40 tool kits. Send for your free copy today! JENSEN TOOLS INC., 7815 46th St., Phoenix, AZ 85044. (602) 968-6231.

CIRCLE 115 ON FREE INFORMATION CARD


AMAZING POCKET REFerence.: 480 pages of tables, formulas, constants, conversions and maps and it fits in your shirt pocket! ( \(3.2^{\prime \prime} \times 5.4^{\prime \prime} \times 0.6^{\prime \prime}\) ) Chapters include Electronics, Computers, Math, Tools, Glues \& Solvents, Chemistry \& Physics, Construction, Carpentry, Geology, Hardware, Automotive, Air, Water, Welding, Plumbing, Pipe, 1-800 Airlines, Area Codes, Money, and much, much more. \(\$ 9.95+\$ 2.00\) shipping (Colorado inc. 56 tax). Check/Visa/MC. Sequoia Publishing, Inc., Dept. 953, P.O. Box 620820, Littleton, CO 80162.
CIRCLE 183 ON FREE INFORMATION CARD

SIMPLY SNAP THE WAT-50 MINIATURE FM TRANSMITTER on top of a 9 v battery and hear every sound in an entire house up to 1 mile away! Adjustable from \(70-130 \mathrm{MHZ}\). Use with any FM radio. Complete kit \(\$ 29.95+\) \(\$ 1.50 \mathrm{~S}+\mathrm{H}\). Free shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD


GET YOUR RECHARGE CATALOG FREE...EARN BIG \$\$ IN YOUR SPARE TIME-All supplies and Do-lt-Yourself kits with complete instructions available. Supplies cost from \(\$ 9.95\) in qty and you can sell recharged toner cartridges for \(\$ 40.00\) to \(\$ 55.00\) each. Printers include HP LaserJet and Series II, Apple LaserWriter, QMS, etc. Canon PC-25 Copier also. CHENESKO PRODUCTS, 62 N Coleman Rd., Centereach, NY 11720, 516-736-7977, 800-221-3516, Fax: 516-732-4650
CIRCLE 192 ON FREE INFORMATION CARD


NEW 1990 GENERAL CATALOG OF TOOLS \& TEST INSTRUMENTS is now available at no charge. 148 color-coded pages make this source book of products for testing, repairing and assembling electronic equipment easier than ever to use. Each product line has been expanded to include over 100 new products. With color photos, descriptions and discounted pricing, it features test equipment, precision hand tools, tool kits, soldering supplies, static control products and more. CONTACT EAST, 335 Willow St., North Andover, MA 01845 (508) 682-2000.

CIRCLE 55 ON FREE INFORMATION CARD


CABLE TV CONVERTERS AND DESCRAMBLERS SB-3 \(\$ 79.00\) TRI-BI \(\$ 95.00\) MLD-\$85.00 M35B \$89.00 JRX-DIC \(\$ 129.00\) Special combos available. We ship COD Quantity discounts. Call for pricing on other products. Dealers wanted. FREE CATALOG. We stand behind our products where others fail. One year warranty. ACE PRODUCTS. P.O. Box 582, Saco, ME 040721 (800) 234-0726.

CIRCLE 75 ON FREE INFORMATION CARD


THE MODEL WTT-20 IS ONLY THE SIZE OF A DIME, yet transmits both sides of a telephone conversation to any FM radio with crystal clarity. Telephone line powered - never needs a battery! Up to \(1 / 4\) mile range. Adjustable from \(70-130 \mathrm{MHZ}\). Complete kit \(\$ 29.95\) \(+\$ 1.50 \mathrm{~S}+\mathrm{H}\). Free Shipping on 2 or more! COD add \$4. Call or send VISA, MC, MO. DECO INDUSTRIES, Box 607, Bedford Hills, NY 10507. (914) 232-3878.

CIRCLE 127 ON FREE INFORMATION CARD

\section*{CALL NOW AND RESERVE YOUR SPACE}
- \(6 \times\) rate \(\$ 940.00\) per each insertion
- Fast reader service cycle
- Short lead time for the placement of ads.
- We typeset and layout the ad at no additional charge.

Call 516-293-3000 to reserve space. Ask for Arline Fishman. Limited number of pages available. Mail materials to: mini-ADS, RADIO-ELECTRONICS, 500B Bi-County Blvd., Farmingdale, NY 11735.


APPLIANCE REPAIR HANDBOOKS-13 volumes by service experts; easy-tounderstand diagrams, illustrations. For major appliances (air conditioners, refrigerators, washers, dryers, microwaves, etc.), elec. housewares, personal-care appliances. Basics of solid state, setting up shop, test instruments. \(\$ 2.65\) to \(\$ 7.90\) each. Free brochure. APPLIANCE SERVICE, P.O. Box 789, Lombard, IL 60148. (312) 932-9550.
CIRCLE 84 ON FREE INFORMATION CARD

\title{
UNIVERSAL \\ 
}

\section*{This universal power supply offers high performance and flexibility at low cost.}

\section*{REINHARD METZ}
remainder supplies voltage-setting and current-limiting functions. The input to to ICl comes from the output of BRI, which is filtered by Cl and C 2 to about +60 -volts DC, and the input for current-sense com

WHILE NUMEROUS BENCH POWER SUPPLIES have emerged over the years, few combine the performance, flexibility, and low cost of the version described here. This article describes a wellregulated, modular, lab-grade power supply with dual \(0-50\)-volt, \(0-5\)-amp DC supplies, and a single 5 -volt, 3amp DC supply. It uses two identical custom PC boards, one for each 50volt supply. There's also a customized heat sink with space for both PC boards that minimizes point-to-point wiring in the 50 -volt supplies. However, because of the modular design, you can customize the configuration as needed. See Table I for a performance summary.

\section*{Circuit description}

Figure 1 is the schematic of the power supply. The value of the design lies in the use of ICl , an LM317HVK adjustable series-pass voltage regulator, for broad-range performance. The "HVK" suffix specifies the highvoltage version of the regulator. The
parator IC2 comes from BR2, which also acts as a negative bias supply for regulation down to ground.

The purpose of ICl is to maintain the out terminal at 1.25 - volts DC above the ADJ terminal. The current drain at the ADJ terminal is very low (nominally \(25 \mu \mathrm{~A}\) ) and, as a result, R15 and R16 (the coarse and fine voltage adjustments) and R8 form a voltage divider, with 1.25 volts appearing across R8. The bottom end of R16 connects to a -1.3 -volt reference level generated by D7 and D8, letting the R8-R15 divider set the output voltage all the way down to ground when \(\mathrm{R} 15+\mathrm{R} 16=0\) ohms. In general, the output voltage is determined by
\[
\begin{aligned}
& \left(\mathrm{V}_{\text {OuT }}-1.25+1.3\right) / \\
& (\mathrm{R} 15+\mathrm{R} 16)=1.25 / \mathrm{R} 8
\end{aligned}
\]

Thus, the maximum value from each variable supply board is:
\(\mathrm{V}_{\text {OUT }}=(1.25 /\)
\(\mathrm{R} 8) \times(\mathrm{R} 15+\mathrm{R} 16)=50.18\) volts DC .
Using potentiometers R 15 and R16

TABLE 1-PERFORMANCE SUMMARY
\begin{tabular}{l|c} 
Characteristic & Capability \\
\hline \begin{tabular}{l} 
Number of \\
supplies
\end{tabular} & \begin{tabular}{c}
2 (fully \\
floating)
\end{tabular} \\
\hline Voltage range & \(0-50 \mathrm{VDC}\) \\
\hline Current range & \(0-5 \mathrm{~A}\) \\
\hline \begin{tabular}{l} 
Coarse vs. fine \\
control ratio \\
(both current \\
and voltage)
\end{tabular} & \(1: 10\) \\
\hline Voltage regulation & \begin{tabular}{c}
\(0.01 \%\) line, \\
\(0.1 \%\) load
\end{tabular} \\
\hline Current limiter & \(0.5 \%\)
\end{tabular}

NOTE: (a) There's a currentlimiting LED;
(b) Has internal +5 VDC, 0-3 A supply.
to control the voltage, Vout ranges from 0-50 volts DC. As current demand increases, the drop across R2 increases, and at about 0.65 volts (which corresponds to about 20 mA ), Q1 and Q2 turn on, becoming the main current path. Also, R3 and R4 ensure that Q1 and Q2 share the load equally. Current limiting is provided by IC2. Its noninverting input uses the output voltage as a reference, and its inverting input is connected to the

voltage divider created by R6 and cur-rent-limit potentiometers R13 and RI4.
The drop across R6 is about 1.25 volts, the reference voltage mentioned above as being the difference between the out and ans terminals of ICl. Current from Q1 and Q2 flows through R9, creating a drop across R13 + R14. Thus, IC2 trips when the drop across R9 creates current through R13 and RI4, causing the voltage at the noninverting input to exceed \(\mathrm{V}_{\text {Out }}\).

That sets the current limit point at: \(\left(\mathrm{I}_{\text {OUT }} \times 0.2\right) /(\mathrm{R} 13+\mathrm{RI} 4)=1.25 /\) \(100 \mathrm{~K} ; \mathrm{I}_{\mathrm{OUT}}=0-5 \mathrm{amps}\). That corresponds to a range of about \(0-5 \mathrm{amps}\). At the current limit point, IC2's output goes low, pulling the ads lead down via D2 and lighting LEDI. Additional current for D5 is provided by R5. As the ady lead is pulled low, the output follows, until the output current drops to a level corresponding to the setting of R13 and R14.

Since the output voltage can be anywher from \(0-50\) volts, the power supply for IC2 must track that range using D3, D4. and Q3. Next. D9 ensures that the output voltage doesn't rise when the supply is shut off. while DIO protects against supply backfeeding. Finally, MI monitors voltage and M2 monitors current. The power supply is modular: each PC board is used for one 50 -volt supply, and includes all parts other than those for the front panel and the 5 -volt supply. Since a dual 50 -volt version may be popular, Tlaccomodates two supplies and the 5-volt supply, and a custom heat sink for the two PC boards is available

\section*{Construction}

The transformer is mounted on a \(6-\times 5-\times 1\)-inch L -bracket in the center of the supply, and the heatsinks for ICI and BRI go on the back of the transformer bracket. A \(6-\times 8-\times 6-\times 11\)-inch U -shaped cover of \(1 / 1\)-inch aluminum completes the assembly. Complete all drilling and preparation before assembly, but instalt only the transformer and its bracket for now. to make wiring casier for you

Next. assemble the PC boards (s) for the 50 -vot supplies: Fig. 3 shows the parts placement diagram. Install all components except Q1. Q2. and IC1. Check resistor values as you go. and mount the heat sink for BRI before installation. Don"t forget to observe


FIG. 2-POWER SUPPLY HEAT SINK LAYOUT. All marked dimensions are in millimeters, all mounting holes are \(1 / 4\)-inch in diameter, all lead holes are \(3 / 16\)-inch in diameter, and add 3 mm to all dimensions with an ( \({ }^{*}\) ) to align the PC boards.


FIG. 3-PARTS PLACEMENT DIAGRAM FOR 50-volt supply. Only one primary and the two relevant secondaries of T1 have been depicted, for brevity.


FIG. 4-PROTOTYPE OF THE POWER SUPPLY. Note the custom PC board heatsink at right, and how S1, F1, LMP1, and R21 are wired.
polarities on all the electrolytic capacitors. Use the aligment holes with 6-32 screws for the PC boards s). In-
stall QI. Q2. and Cl . using mica insulators, heat sink compound, and 6-32 screws. Check for shorts from

\section*{PARTS LIST}

All resistors are \(1 / 4\)-watt, \(5 \%\), unless otherwise indicated.
R1-5000 ohms, 1-watt
R2-33 ohms
R3, R4-0.1, 3-watt
R5-680 ohms
R6- 115,000 ohms, \(1 \%\)
R7-220 ohms
R8-274 ohms, \(1 \%\)
R9-0. 0.2 ohm, 5 -watt
R10-24,000 ohms
R11-360 ohms
R12-2400 ohms
R13-100,000-ohm potentiometer
R14, R15-10,000-ohm potentiometer
R16-1000-ohm potentiometer
R17-20,000-ohm PC-boardmounted potentiometer
R18-500-ohm PC-bozrd-mounted potentiometer
R19-470,000 ohms
R20-5000-ohm PC-board-mounted potentiometer
R21-thermistor in-rush protector (Keystone KC003L)

\section*{Capacitors}

C1, C2-4700 \(\mu\) F, 100 volts (Panasonic P6430)
C3-1000 \(\mu \mathrm{F}, 50\) volts, Panasonic P6272
C4- \(1 \mu \mathrm{~F}, 63\) volts
C5- \(10 \mu \mathrm{~F}, 500\) volts
C6- \(0.001 \mu \mathrm{~F}\). ceramic disc
C7-100 pF, mica
C8, C9- \(10 \mu \mathrm{~F}, 50\) volts
C10-22,000 \(\mu \mathrm{F}, 16\) volts (Panasonic P6420)
C11, C12-0.1 \(\mu \mathrm{F}\), ceramic disc

\section*{Semiconductors}

IC1—LM317HVK adjustable, seriespass, high-voltage regulator
IC2-LF357A JFET input, 8-pin DIP comparator
IC3-LM323K 5-volt DC regulator in TO-3 case
D1, D2, D7, D8, D9-1N4148 germanium diode
D3, D4-1N4744A, 15-volt, 1-watt Zener diode
D6-1N4736A, 6.8 -volt, 1-watt Zener diode
D10-FR802 8-amp, 100-volt fast-recovery silicon rectifier (TO-220 package)
BR1, BR3-MB102 10-amp, 200-volt bridge rectifier
BR2-DB103 1-amp, 200-volt bridge rectifier
Q1, Q2-MJ5023 or ECG68 PNP silicon transistor
Q3-ECG128 or 2N3700 1 watt general purpose NPN silicon transistor
LED1-yellow light-emitting diode
Other components
F1-8-amp fast-blow fuse
F2-6-amp fast-blow fuse
T1-600 VA transformer; 120 -volt AC primary; two 42 -volt, 5 -amp secondaries; two 17 -volt, \(250-\mathrm{mA}\) secondaries; and one 7 -volt, 3 -amp secondary
PL1-120-volt AC pilot light
M1-50 mA meter (GC Electronics 20-1110)
M2- \(100 \mu \mathrm{~A}\) meter (Jewell 81T)
S1-120-volt, 10 -amp DPST switch
S2—SPDT switch


FIG. 5-PRIMARY HEAT SINK ASSEMBLY CLOSE UP. You can see how Q1 and IC1 are attached, the silicone grease used for heat transfer, and how the heatsink is attached to the PC boards. The mica insulators aren't clearly visible from this perspective.
\(\mathrm{Q} 1, \mathrm{Q} 2\), or ICl to the heatsink. Note that \(B R 1\) and \(B R 3\) have different pin
connections than BR2
A variety of meters can be used

J1, J3, J5-red banana jack
J2, J4, J6-black banana jack
Miscellaneous: 8 -inch wide \(\times 6\)-inch high \(\times 11\)-inch deep aluminum case with \(1 / 8\)-inch predrilled aluminum plate as front panel (including holes for handles) and \(8-\times 11-\times 3 / 32\)-inch steel plate with a 1 -inch lip on the bottom, two front-panel-mounted case handles, \(6-\times 8-\times 3-1 / 8\)-inch dual-supply main heatsink, heatsink for 5 -volt DC regulator with TO-3 case, heat sink for BR1, 3wire power cord, knobs, four rubber feet, panel-mounted fuse holder (for F1), two PC-board mounted fuse clips (for F2), PC board (DigiKey \#F040), three TO-3 transistor insulator kits, silicone grease, wire, solder, etc.
NOTE: The following parts are available from A\&T LABS, P.O. Box 552, Warrenville, IL 60555; plated PC board with parts placement silkscreen, \$19.00; 600 VA custom dual-supply transformer (T1), \$66.00; custom dual-supply main heatsink, \$42.00; LM317HVK (IC1), \$8.00; MJ4502 (Q1 and Q2), \$6.00; M1, \(\$ 16.00\). Send check or money order, except for COD orders via UPS in the U.S. If you don't order T1, add \(5 \%\) shipping and handling for U.S., and \(10 \%\) for Canada. If you order T1, add \(12 \%\) for U.S., and \(17 \%\) for Canada; Illinois residents add 6.75\% sales tax.
with this design. Sensitivity differences are compensated with PC-board-mounted resistors and potentiometers. The values in the parts list call for \(50 \mu \mathrm{~A} / 2500\) ohms for MI , and \(100 \mu \mathrm{~A} / 700\) ohms for M2. In most cases. panel meters require some faceplate disassembly or removal to mark them for 50 volts and 5 amps DC at full scale. Assuming sensitivities of \(I_{V}\) and \(R_{V}\) for \(M 1\) and \(I_{1}\) and \(R_{1}\) for M2, the resistor values are:
- R19 \(=25 / I_{V}, R 20=2 \times R_{V}\)
- R17 \(=2 \times\left(1.0_{1}-R_{1}\right)\), for 5 amps full-scale.
- R18 \(=2 \times\left(0.1 / I_{I}-R_{1}\right)\), for 0.5 amp full-scale.
- R18 \(=2 \times\left(0.2 / \mathrm{I}_{1}-\mathrm{R}_{1}\right)\), for 1 amp full-scale.

Proceed with the point-to-point wiring from the PC board to the front panel. Those wires should all termicontimued on page 69

\title{
ION METER
}

A COUPI [: OF DECADES AGO. RESEARCH scientists were examining how the population ratio of positive to negative ions in our atmosphere affect human behavior. Many theories were generated-among them, that positive ions cause irritability and erratic behavior, and that negative ions promote well-being. That theory still persists, as can be seen from the numerous products that are marketed to flood your home or office with negative ions

Because of the interest, the electronics magazines of the time published articles on the properties of ions, how to produce them, and even how to build chambers to measure them. The device in one of the first articles, back in 1969, used a short detector-rod antenna in a cylindrical wire-mesh detector sereen. The screen was polarized to plus or minus 60 volts DC, causing ions of the opposite polarity to that of the screen be attracted to it, pass through, and be collected by the detector rod. A special tube was used to amplify the minute voltage induced in the detector rod, which had a 100,000 -megohm input impedance. The device used a 1.5-volt battery for the tube filament, a 9 -volt battery for the circuit, and a 67 -volt battery for the screen.

\section*{Circuit description}

The schematic of an updated version is shown in Fig. I. The tube was replaced with a dual-gate RCA 40673 or 40841 MOSFET with both gates tied together as the detector input. The input impedance isn't as high as was the case with the tube, but there's more than enough sensitivity without needing a \(100,000-\mathrm{megohm}\) grid resistor, and the gate impedance bleeds off ions without an external resistor. RI prevents static-voltage buildup on the detector screen in dry weather and instability in MI.

The MOSFET drain feeds a balanced DC bridge using two 2 N 2222 's coupled to MI, a zero-center, \(\pm 150-\mu \mathrm{A}\) meter. Since the MOSFET

\section*{Build this ion meter and keep track of the level of ions in your home.}

By PETER A. LOVELOCK

forms one leg of a bridge, any change in drain current caused by ions at the detector will unbalance it, deflecting MI. Since the device can indicate only relative negative or positive ion levels, the ion meter is balanced for zero, and reads increasing or decreasing levels for the selected polarity; don't interpret MI as indicating a negative left-hand and positive righthand scale. Besides filtering the ion type. the detector screen also shields the detector rod from static charge. If the shield is removed, body movements within a couple of feet of the detector rod can make M1 fluctuate, due to static charge that may be present on your clothes.

The ion meter can be powered from either a 9 -volt battery, BI , or a 12 -volt DC plug-in supply. Whichever supply is in use operates ICl, a 555 which generates a square wave that's fed to a 6-stage ladder multiptier composed of D1-D12 and Cl-Cl4. Each stage acts as a voltage doubler, so the multiplier increases the applied voltage by \(2 \times 6\), or 12 . The +5 -volt internal supply is boosted to plus or minus 60 volts at the detector screen, whereas using BI the multiplier generates plus or minus 108 volts DC. The available current is a few microamps, and the output impedance is about 100 megohms, or RI. Also, RI prevents loading the multiplier, dropping the detector-screen voltage and cutting sensitivity. The voltage polarizes the detector screen, as long as there's no load.

Measuring the multiplier's output voltage is difficult, since most multimeters. despite their high input impedances, will load the output of the ion meter. Typically, a multimeter with 10 -megohm input impedance exhibits a false reading of \(25-45\) volts DC, when using the plug-in supply. The good thing about the very high impedance at the detector is that shorting the plus or minus 60 or 108 volts DC from screen to case won't generate much current, so a short won't damage the circuit. However,


FIG. 1-SCHEMATIC OF THE ION METER; R5 controls the sensitivity of differential amplifier Q2-Q3, and R5 and R8 control the balance. Q1 is a very high input impedance dual-gate MOSFET, and IC1 is a \(20-\mathrm{kHz}\) astable feeding a \(\times 12\) voltage multiplier composed of D1-D12 and C1-C14.


FIG. 2-PROTOTYPE OF THE ION METER, showing the rear internal view. The detector screen plugs into J 2 and J 4 , and the detector rod plugs into J . Note that the wiring for IC2 is fairly tight, and also that the jumper running under C12 is supposed to be run on the foil side of the PC board.
be very careful, regardless of the low current, when dealing with voltages of that magnitude. Switch S2 reverses the multiplier input-out- screen voltage be either positive or negative, regardless of whether IC2 or B 1 is used as the supply. The ion meter draws 4 mA at 9 -volts DC, so a standard \(70 \mathrm{mAh}, 9\)-volt battery should be enough to give you 16 hours of continuous use

\section*{Construction}

The interior view of ion-meter prototype is shown in Fig. 2. You can build the circuit on a \(2 \times 3\)-inch piece of perforated circuit board, or you can etch a PC board using the pattern provided in PC Service. Before you use the foil pattern provided in PC Service, you may have to modify it slightly. Figure 3 points out two jumpers that must be added, and one that must be cut. The PC-board source in

\section*{PARTS LIST}

All resistors are \(1 / 4\)-watt, \(5 \%\), unless otherwise indicated.
R1-100 megohms (see text)
R2-3300 ohms
R3-82,000 ohms
R4, R10-22,000 ohms
R5-250-ohm, 2-watt, cabinetmounted potentiometer
R6, R12- 10,000 ohms
R7-50,000-ohm, 2-watt, cabinetmounted potentiometer
R8-1000-ohm, 15-turn, PC-boardmounted, trimmer potentiometer
R9, R14-150 ohms
R11- 15,000 ohms
R13-220 ohms
Capacitors
C1-C14-0.01 \(\mu \mathrm{F}, 35\) volts, disc ceramic
C15-470 pF, 50 volts, disc ceramic
C16-22 \(\mu \mathrm{F}, 16\) volts, tantalum
\(\mathrm{C} 17-0.1 \mu \mathrm{~F}\), 16 volts, tantalum
Semiconductors
D1-D12-1N4001 silicon diode
Q1-RCA 40673 or 40841 dual-gate, P-channel MOSFET
Q2-2N2222 NPN transistor
IC1-555 timer
IC2-7805 5-volt DC regulator
Other components
S1-miniature 3PDT switch
S2-miniature SP3T switch
\(\mathrm{M} 1- \pm 150-\mu \mathrm{A}\) meter with centered needle
PL1, PL2-threaded banana plugs and nuts
J1-miniature monophonic jack
J2, J4-banana jacks without ground lugs
J3-miniature pin jack
Miscellaneous: Chassis box, \(5-1 / 4\) \(\times 3 \times 2-1 / 8\)-inches, PC board standoff kit, TO-220-type transistor case insulated mounting kit for IC2, 120 VAC-to-12 VDC plug-in power supply, \(4 \times 5\)-inch piece of \(1 / 8\)-inch grid metal screening, 8 -pin DIP socket, two 3-pin transistor sockets, one 4pin transistor socket, 9 -volt battery clip, plastic cover from subminiature switch for detector rod, solder, wire, hardware, etc.
NOTE: The RCA 40763 dual-gate MOSFET is available for \(\$ 2.00\) plus \(\$ 3.00\) shipping and handling from Circuit Specialists, P.O. Box 3047, Scottsdale, AZ 85271-3047, (800) 528-1417 or (602) 966-0764; shipping time is normally about 10 days. The PC board is available from R.R. Assoc., 31066 Glendon, Los Angeles, CA 90034, for \(\$ 4.50\). That includes shipping and handling; California residents add sales tax.


FIG. 3-PARTS-PLACEMENT DIAGRAM of the ion meter. Note the terminals used for J1, and the modifications to the PC board (all they involve is cutting a foil and adding two jumpers).
the Parts List will make every effort to make those changes for you in advance, but be aware of them anyway.

RI may be hard to find; an alternative is ten \(1 / 4\) - or \(1 / 8\)-watt, 10 megohm resistors in series. Potentiometer R8 is a \(10-15\)-turn, PC-boardmounted version, while R5 and R7 are the case-mounted variety, and permit easy adjustment of M1. The partsplacement diagram is shown in Fig. 3. Mount the voltage multiplier first, being careful with \(\mathrm{Cl}-\mathrm{Cl} 3\) and DI-D12. A mistake there can reduce detector-screen voltage, or result in no polarizing voltage at all. The resistance from the cathode of Dl to the anode of D12 should be about 300 ohms.

Install ICl using an 8-pin DIP socket, then R2, R3, and C15. Next R4, R6, R8-R12, R15, and C16 are installed; R4, R10 and R15 are to be vertically mounted. Then, connect \(\mathrm{M} 1, \mathrm{R} 5, \mathrm{R} 8, \mathrm{~S} 1, \mathrm{~S} 2\), and the detector. Leave plenty of extra lead length; you can trim off the surplus when the PC board is installed in the case. Install


FIG. 4-ION METER CASE LAYOUT, consisting of top surface, front panel, bottom surface, and rear panel. Make sure that everything has been carefully measured before any drilling or cutting.


FIG. 5-DETECTOR SCREEN, SHOWING (a) the cage with the banana clips, and (b) the cap over the top of the cage, made from a 1.25 -inch inner-diameter pill bottle cap.

Q1-Q3 with transistor sockets if possible; otherwise, use minimal soldering time and, preferably, a grounded soldering iron for Q 1 .

\section*{The case}

All prototype components were mounted in a two-piece, \(5-1 / 4 \times 3 \times 2\) \(1 / 8\)-inch box. One half serves as front panel for R5, R7, S1, S2, and M1. The top of that half supports the detector rod and screen as shown in Fig. \(2-a\). Figure 4 is the dimensioned case layout, showing the upper surface, front panel, lower surface, and rear panel. Use a straight-edge and pencil to locate the front-panel holes for S 1, S2, R5, and R7, mark with a center punch, and drill. Check the shaft diameter of the parts you plan to use. and adjust the drill sizes accordingly.

The hole for MI isn't dimensioned since yours may vary from that of the prototype. You'll need a \(\pm 150-\mu \mathrm{A}\) zero-center meter for MI. A surplus FM-radio tuning meter should work nicely. Some meters are "D"-shaped. requiring modification of the hole with a small file, for an easy fit. If
yours uses mounting screws, drill additional holes, and mount MI on the front panel with screws, clips, dou-ble-sided adhesive tape, or rubber cement. Apply the latter to both the rear surface of the meter and the front pamel, and let it dry. It'll act like contact cement, but you can still pry Ml off.

Drill a \#6 hole for the heatsink of IC2 in the bottom surface of the top half of the case, as shown in the lower surface drawing of Fig. 4. For a case other than the one specified in the Parts List, modify the drilling dimensions. You can try a plastic case if you want to, but a metal one might provide better shielding. When all the holes are drilled, don't mount any components until you've applied the lettering using rub-on transfers.

Clean the front panel with steel wool or rubbing alcohol. Cut the lettering with an X-acto knife, hold with tweezers, and position on the front panel; don't mount the knobs, screws, or MI until you're done. Press the lettering with a fingernail, run a pen over the surface, and lift the backing off with tweezers. Cover with pa-
ing off with tweezers. Cover with paper, and rub firmly with a fingernail for a good bond. Let it dry for a day before applying varnish.

\section*{The detector}

The detector screen is made from a \(4 \times 5\)-inch piece of \(1 / 8\)-inch metal screening, as shown in Fig. 5. Roll it into a 5-inch long cylinder, hook the ends to form a seam, and solder. Solder small L-brackets with \#6 holes to one end, and mount banana plugs PLI and PL2 with nuts; they plug into J2 and J4. The opposite end of the detec-tor-screen cylinder can be closed with a large plastic pill-bottle cap (1.5-inch inner diameter).

Figure 6 shows the detector-rod in-


FABRICATE FROM GLASS-EPOXY BOARJ
a


FIG. 6-DETECTOR-ROD INSULATOR BOARD, showing (a) physical layout and (b) assembly into the case.
sulator board, made from a \(1.25-\times 1-\) \(1 / 4\)-inch piece of glass phenolic: the detector rod plugs into J3. As shown in Fig. 4- \(b\), mark and punch the \(3 / 4-\) inch hole for the detector-rod insulator board. Drill two \(1 / 4\)-inch and two \#6 holes as shown. Center the hole for J 3 on the \(3 / 4\)-inch hole in the top of the case, and drill two holes in the insulator board through the mounting holes in the top of the case.

Attach the insulator board to the inside of the top of the case with \#4 machine screws. Make the detector rod from a \(5-5 / 16\)-inch piece of \(1 / 16\)-inch piano wire, as shown in Fig. 4-c. Glue a rubber cap from a small subminiature switch handle on one end as a grip. That'll let you insert and recontinued on page 70


Limit your audio volume to prevent clipping and distortion.

\section*{LOWELL D. JOHNSON}

HAVE YOU EVER BEFN ANNOYED BY A PAG ing system that makes the speaker difficult to understand, or by a stageshow performer who rattles the speakers by singing loudly into a microphone? Most people assume that the equipment is malfunctioning, and that repairs are needed. However, in many cases that's not so; and the real culprit that's causing the distortion is audio-level mismatching

Basically, if the gain of an audio amplifier is adjusted for a small input signal, and a large signal is applied, then the amplifier is driven beyond its capabilities and distortion results, even though the amplifier is working perfectly. And, if the amplifier is adjusted for a strong input signal, and a weak signal is applied, then it is difficult to understand what the speaker is saying. In either case, it sounds awful, and the message doesn't get across. However, if you build the circuit described in this article, it will climinate those kinds of problems; the circuit maintains a constant outputvoltage level, regardless of the input signal.

The circuit produces no clipping, which would flatten the peaks of the signal, and virtually zero distortion, because the shape of the output signal
is a true replica of the shape of the input signal. The circuit introduces little noise, so none is heard at the output. Pumping, or changes in amplifier gain that can be detected by the listener, is almost imperceptible. Transient spike handling is excel-lent-if it weren't, the limiter would not be fast enough to control instantaneous fast-rising spikes, such as a percussive sound.

Volume limiters aren't always desirable. For example, the circuit we'll present was installed in a church PA system to compensate for the different voice levels of the various members of the congregation who made short an-


FIG. 1-BLOCK DIAGRAM of the audio limiter. The feedback loop of IC1-a controls the gain of the circuit.
nouncements. Everyone loved it-except the minister. After the sermon, he very strongly requested that a switch be installed that could disable the limiter. It seems that he preached fire-and-brimstone, and he wamted to rattle the speakers

\section*{Circuitry}

Figure 1 shows the block diagram of the audio limiter. Amplifier ICl-a can change its gain from \(1 / 100\) th to \(\times 100\), depending on the net effect of its feedback loop. That way, the overall gain of the circuit is such that the output level remains constant. If we put a potentiometer in the feedback loop of \(\mathrm{ICl}-\mathrm{a}\) that we could continuously adjust to maintain a steady output level, that would do the trick. However, that would be extremely impractical, as well as being boring; what we need is a resistor that can instantly change its value in accordance with the output voltage of ICl-a. An optically coupled Light-Dependent Resistor, or LDR would do the trick

An optocoupler is a device that contains both a light source (an LED) and some kind of light-sensitive device (in this particular case it happens to be an LDR) inside one package,


FIG. 2-SCHEMATIC OF THE VOLUME LIMITER. IC1-a is connected as an inverting amplifier whose gain is controlled by the LDR portion of an optocoupler.


FIG. 3-FOLLOW THIS PARTS-PLACEMENT DIAGRAM if you are using the PC board.

\section*{PARTS LIST}

All resistors are \(1 / 4\)-watt, \(5 \%\).
R1-10,000 ohms
R2-1 megohm
R3, R7- 100,000 ohms
R4-300,000 ohms
R5- \(\mathbf{1 0 0 0}\) ohms
R6-100 ohms

\section*{Capacitors}

C1, C2, C6, C7, C9, C10-22 \(\mu \mathrm{F}, 35\)
volts, electrolytic (a larger value will also do)
C3, C5- \(100 \mathrm{pF}, 50\) volts
C4, C8-0.1 \(\mu \mathrm{F}, 50\) volts

\section*{Semiconductors}

IC1-NE5532 low-noise audio amplifier (Signetics)
IC2-VTL-5C4-2 optocoupler device (Vactec)
with the leads of both brought out to external pins, much like an IC. When

D1-D6-1N914 diode
Other components
J1, J2-RCA jacks
Miscellaneous: power supply, project case, wire, solder, etc.
Note: A kit of parts, a PC board, and assembly instructions (power supply and enclosure not included) is available for \(\$ 48.00\), and a single PC board is available for \(\$ 25.00\), from Woods Electronics Inc., 4233 Spring St. \#117, La Mesa, CA 92041 (619) 265-2551 (order \# AVL-42889-K). An assembled and tested unit is also available for \(\$ 57.00\) (order \# AVL-42889-A). Check or money order, only.
the LED is turned on via an external input voltage, the LDR's resistance is
very small, and when the LED is turned olf, the LDR's resistance becomes very large. The resistance of the LDR can therefore be varied at a very fast rate, according to the intensity of the light from the LED. So let's use the LDR portion of an optocoupler in the feedback loop of our amplifier to produce a gain-controlling cireuit.

Now, to be more specific, we need an optocoupler with an LDR that can reduce its resistance instantly when its input signal reaches the limiting theshold, thereby reducing the gain of the amplifier to just below the threshold. Then we'd like it to stay at that value until the input signal became weater, and then gradually increase the gain until the threshold is reached. Fortunately, the VTL-5Ct-2 from Vactec Inc. ( 10900 Page Blud St. Louis, MO 63132) has exactly those characteristics. When the light source is illuminated, the resistance decreases in a matter of microseconds (very fast with respect to audio frequencies) and when the light source is removed, the resistance increases over a period of seconds (very slow with respect to audio frequencies). Those combined characteristics can form a limiting circuit that produces a constant output level. but whose action is not easy-in fact. yuite diffi-cult--for the listener to detect.

Figure 2 shows the schematic of the volume limiter. \(\mathrm{ICl}-\mathrm{a}\) is connected as an inverting amplifier; ignoring the L.DR (assume that its resistance is very high so that it doesn't affect the feedback loop), the gain is R2/R1, or 100 . Standard low-impedance-microphone preamplifiers have a gain of 100. Thus, the output at ICl -a pin ! will be about 2 volts \(p-p\).

The second hall of the amplifier, ICI-b, is connected to the output through C 4 , and its gain is \(\mathrm{R} 4 / \mathrm{R} 3\), or 3. The optocoupler's LED turns on when the voltage across it is about? volts. The higher the current through it, the brighter it illuminates. On positive peaths, it is in series with D1 and D2, and on negative peaks it is in series with D3 and D 4 . Since DI-D 4 are silicon diodes, about 0.7 volts is dropped across each one before they begin to conduct. Therefore, the total positive voltage across the bridge required to illuminate the LED is \(0.7 \mathrm{~V}+0.7 \mathrm{~V}+2 \mathrm{~V}\), or slightly less than \(3 .+\) volts. The same voltage with a negative polarity appearing across
the bridge will also illuminate the LED.

As the AC signal at ICI-b pin 7 approaches 6.8 -volts AC, the LED receives short bursts of current, and the LDR instantly reduces in value to a point where it reduces the gain of \(\mathrm{ICl}-\) a, thereby reducing the output of \(\mathrm{ICl}-\) b pin 7 to less than 6.8 volts AC . Because of the slow recovery time of the LDR, it appears effectively as a fixed resistor and therefore produces virtually no distortion. The output voltage, 6.8 -volts AC , when divided by the gain of ICl-b, is about 2 -volts \(\mathrm{p}-\mathrm{p}\), which is a standard line level. Since the LDR can go below 100 ohms, the gain of ICl-a can be reduced to LDR/RI, or 1/10oth. That means that signals up to 200 -volts p-p can be applied to the input (although you'll never have an input with that magnitude), while maintaining the output at a line level; any input signal ranging from microphone-level to 200 volts will produce a clean line-level output.

If R5 were left out of the circuit, the output level would be so constant that a monotone sound quality would result. By putting a little resistance in series with the bridge, the output voltage will be allowed to vary a little, and the sound is much more natural. A 1 K resistor is a good choice for R 5 , but try out other values for yourself. You may also want to try other R2/R1 and R4/R3 ratios.

The NE5532 ( lCl ) is a relatively expensive duatop-amp with very-lownoise characteristics. If you can tolerate some noise, feel free to use a 741 , 324 , or any other general-purpose audio op-amp. If you do, note that the pin numbers may change. Also, Cl , C2, C6, and C7 are used to block DC. If no DC exists in your design, then you may omit them. R6 is included for spike protection; if no dangerous spikes will exist, you may omit that resistor, too. Capacitors C3, C5, and C8 are included as standard practice, but if no undesirable effects occur, you may omit them. Use any regulated supply voltage, such as two 9 volt batteries or a \(\pm 12\)-volt DC supply. Just don't exceed the maximum voltage ratings of the IC that you decide to use. The current drawn by the circuit will depend on the op-amp that you decide to use for the project, but it will never be more than a few milliamps per op-amp section.

If you want to operate without a
negative supply, then connect ICl pin 4 to ground, and create a \(V_{C C} / 2\) supply with another unity-gain op-amp section and a voltage divider. Then connect all the ground connections except for the input and output grounds to that, and connect ICI pin 8 to \(\mathrm{V}_{\mathrm{CC}}\) (just reference everything up to \(\mathrm{V}_{\mathrm{CC}} / 2\) ). Always use at least \(15-\) volts DC-preferably 24 -volts DC. Also. the optocoupler used for the project is a dual-element type; they are more versatile. However, you can use the VTL-5C4 (the single-element version) if you like.

\section*{Building the circuit}

Because ICI-a may have a gain of up to 100 , you must keep the leads short in that circuit. Ground loops can defeat any circuit, so keep all powersupply grounds together on one side of the board. Also, remember to use shielded wire on the input and output connections. You can use point-topoint wiring on perforated construction board, but it's best to use the foil pattern provided in PC Service to make a board and use that instead. A ready-to-use PC board is also available from the source mentioned in the parts list.

Figure 3 shows the parts-placement diagram for the audio limiter. Be sure to check for solder shorts and all of that other bad stuff before powering up and testing the circuit. RCA-type jacks are probably the best choice lor Jl and J2, but use whatever best suits your application.

To test the circuit, simply connect a microphone, and observe the output on an oscilloscope, or listen to it through a headset (to cut out feedback). The output should remain at the same level, regardless of whether you whisper or scream into the microphone. A note of caution: Remember that the limiter works to correct the gain by looking at seldom-encountered maximum peaks. If you feed in a sine wave, you will notice that the output indeed remains constant, no matter what the input voltage, but a "blip" appears on each and every peak (which would imply high distortion). In a normal audio signal, not all peaks are the same amplitude, and only seldom-occurring maximum peaks are acted upon. Since they occur very infrequently (as compared to audio frequencies), the distortion of the limiter is actually very low-you won't even notice it.

R-E


Add prestige and earning power to your technical career by earning your Associate or Bachelor degree through directed home study.
Grantham College of Engineering awards accredited degrees in

\section*{electronics and computers.}

An important part of being prepared to move \(u p\) is holding the right college degree, and the absolutely necessary part is knowing your field. Grantham can help you both ways-to learn more and to earn your degree in the process.

Grantham offers two degree pro-grams-one with major emphasis in electronics, the other with major emphasis in computers. Associate and bachelor degrees are awarded in each program, and both programs are available completely by correspondence.
No commuting to class. Study at your own pace, while continuing on your present job. Learn from easy-to-understand lessons, with help from your Grantham instructors when you need it.

Write for our free catalog (see address below), or phone us at toll-free 1-800-955-2527 (for catalog requests only) and ask for our "degree catalog."

\section*{Accredited by} the Accrediting Commission of the National Home Study Council GRANTHAM College of Engineering 10570 Humbolt Street Los Alamitos, CA 90720



FIG. 1-A SIMPLE ENERGY-PRODUCING cell can be constructed from two dissimilar metals such as copper and zinc immersed in an acid electrolyte.

Any high-school chemistry book can provide you with detailed information on how the electron-producing reactions work. And, if you have fillings in your teeth and have ever bitten down on a coin or a piece of gumwrapper foil, you have experienced (and tasted) firsthand how a simple battery works.

A simple, lab-experiment energy cell is illustrated in Fig. 1. In principle, all energy-producing cells have the same three principal components. They are:
Anode: the material that is oxidized and gives up electrons during the chemical reaction. The anode is usually marked with a" - ."
Cathode: the material that is reduced (releases oxygen) and accepts electrons during the reaction. It is usually marked with a " + ."
Electrolyte: the conductor through which electrons travel from the anode to the cathode as ions. The electrolyte is usually a "wet," or at least a damp material.

Note that, contrary to customary usage in electronics, the anode is the negative electrode of an energy cell and is indicated with a "-." The positive electrode, marked with a " + ," is the cathode. In a rechargeable device, the functions of the electrodes are reversed during charging however, and conventional terminology then applies.

Cells and batteries are divided into
two types: primary and secondary. Primary cells, which include the common throw-away " flashlight battery" types, expend their energy and, when their chemicals are exhausted, they must be discarded. Secondary cells are rechargeable (the chemical action is reversed by forcing a reverse flow of electrons), and include nickelcadninium types and the lead-acid batteries used in automobiles.

\section*{Leclanche cells}

Figure 2 shows the construction of
an ordinary carbon-zinc D-size cell. The anode, cathode, and electrolyte are just a few of the components of a modern-day dry cell. Many of the others, though, such as the paper separator, serve just to "fine-tune" the performance of the device. That type of dry cell belongs to a class called "Leclanche cells" (sometimes pronounced Le-clan-SHAY) cells. They are named after Georges Leclanche, the Frenchman who produced the first carbon-zinc cell in 1866.

Because carbon-zinc cells are in


FIG. 2-THE "CLASSIC" DRY CELL uses a zinc can as anode, an ammonium/zincchloride electrolyte, and a manganese-dioxide cathode mix. The carbon rod plays no active part in the electron-producing reaction.


\section*{Take any one of these HANDBOOKS ELECTRONICS and CONTROL}

\section*{- your one source for engineering books from over 100 different publishers \\ - the latest and best information in your field \\ - discounts of up to \(40 \%\) off publishers' list prices}


322/910

\section*{Publisher's Price \(\$ 114.50\)}

ANTENNA ENGINEERING HANDBOOK, Second Edition
Edited by R. C. Johnson and H. Jasik
- 1,408 pages, 946 illustrations
- covers all types of antennas currently in use with a separate chapter devoted to each
- provides detailed data on physical fundanentals, operating principles, design techniques, and performance data
- up-to-the-mimute information on antenna applications
- a must for those involved in any phase of antenna engineering

\section*{Publisher's Price \$75.00} STANDARD HANDBOOK OF ENGINEERING CALCULATIONS, Second Edition
By T. G. Hicks
- 1,468 pages, 793 illustrations, 499 tables
- puts more than 1,100 specific calculation procedures at your fingertips
- every calculation procedure gives the exact, numbered steps to follow for a quick, accurate solution
- viruaally all procedures can be easily programmed on your PC or calculator
- uses USCS and SI units in all calculation procedures



Publisher's Price \(\$ 98.50\)

\section*{TELEVISION ENGINEERING} HANDBOOK
Edited by K. B. Benson
- 1,478 pages, 1,091 illustrations
- packed with all the technical information today's engineer needs to design, operate, and maintain every type of television equipment
- extensive coverage of receivers, broadcast equipment, video tape recording, video disc recording, and the latest technological advances
- provides television system and industry standards for the U.S. and other countries
- the most comprehensive book on the subject of television engineering

\section*{for only \(\$ 14.95\) - when you join the ENGINEERS' BOOK CLUB}


\section*{Publisher's Price \(\$ 89.95\)}

MODERN ELECTRONIC CIRCUITS REFERENCE MANUAL
By J. T. Markus
- 1,264 pages, 3,666 circuit diagrams
- a handy, desktop reference with 10.3 chapters organized by "family" grouping
- filled with predesigned and use-tested circuits to save you production time and money
- includes concise sumnaries of all the recent applications notes, journal articles, and reports on each circuit, efficiently organized and indexed for the practicing engineer

\section*{Publisher's Price \(\$ 89.50\)}

\section*{ELECTRONICS ENGINEERS' \\ HANDBOOK, Third Edition}

Edited by D. G. Fink and D. Christiansen
- 2,496 pages, 1,600 illustrations
- the definitive reference to electronics engineering
- fully updated to cover all recent advances and developments
- ranges from essential principles and data to the latest design solutions and practical applications - with an all-new chapter on standards
- written and compiled by more than 170 contributors - all experts in their fields


\section*{4 reasons to join today!}

1. Best and newest books from all publishers! Books are selected from a wide range of publishers by expert editors and consultants to give you continuing access to the best and latest books in your field.
2. Big savings! Build your library and save money, too! Savings range up to \(40 \%\) off publishers' list prices.
3. Bonus books! You will automatically be eligible to participate in our Bonus Book Plan that allows you savings up to \(70 \%\) off the publishers' prices of many professional and general interest books!
4. Convenience! 14-16 times a year (about once every 3-4 weeks) you receive the Club Bulletin FREE. It fully describes the Main Selection and alternate selections. A dated Reply Card is included. If you want the Main Selection, you simply do nothing - it will be shipped automatically. If you want an alternate selection - or no book at all - you simply indicate it on the Reply Card and return it by the date specified. You will have at least 10 days to decide. If, because of late delivery of the Bulletin you receive a Main Selection you do not want, you may return it for credit at the Club's expense.
As a Club member you agree only to the purchase of two additional books during your first year of membership. Membership may be discontinued by either you or the Club at any time after you have purchased the two additional books.

FOR FASTER SERTICE in ENROLLING CALL TOLL FREE 1-800-2-MCGRAW

such widespread use, it will pay to devote a paragraph or two to a discussion of the elements of which they are comprised. Figures 2 and 3 show car-bon-zinc cells using paste and paper separators, respectively. (Because a paper separator occupies less space than the paste type, paper-separator cells can contain more reactive materials and produce about ten percent more power.)

The anode is a zinc can, zinc being one of the two reactive materials in the cell. The can also serves as a container for the other cell materials. Today, zinc cans are usually enclosed in a steel jacket, which increases durability and helps to contain leakage, should that occur.

Lining the inside of the can is the paste or paper separator. Its purpose is to physically and electrically isolate the positive and negative electrodes while permitting electrolytic or ionic conduction to take place through the electrolyte. The paste contains electrolyte and a gelling agent such as starch or flour. The paper-type separator is coated with a gelling agent and impregnated with electrolyte that is squeezed out of the cathode material during manufacture. Ordinary general-purpose Leclanche cells use an electrolyte made of ammonium chloride ( \(\mathrm{NH}_{4} \mathrm{Cl}\) ), zinc chloride \(\left(\mathrm{ZnCl}_{2}\right)\), and water. In "heavy-duty" cells, the electrolyte is almost entirely zinc chloride and water.

The bulk of the cell consists of the cathode mix, also known as the "bobbin," "black mix," or "depolarizer." Its constituents are manganese dioxide \(\left(\mathrm{MnO}_{2}\right)\), carbon black, and electrolyte. The purpose of the carbon is twofold: it holds the electrolyte and adds electrical conductivity to the mix. Some cells use a very pure electrolytically derived form of \(\mathrm{MnO}_{2}\) known as EMD (Electrolytic Manganese \(D\) ioxide). Although that makes them more expensive, it also makes for an extra-heavy-duty device. A carbon rod is inserted at the center of the bobbin, which is the cell's current collector (electron source). The semi-porous rod also acts as a vent for hydrogen gas.

Note that although the Leclanche cell is frequently called a carbon-zinc (or zinc-carbon) type, carbon does not take part in the chemical reaction that produces electricity. The active ingredients are zinc and the manganese compound(s).


FIG. 4-THE LARGE ELECTRODE area of the Polapulse battery gives it the power to deliver enormous quantities of current.
volts, although a brand-new one may be measured as high as \(1.75-1.8\) volts. A general-purpose Leclanche cell has an energy density of about 30 watthours per pound.

A special form of the carbon-zinc design is the Polapulse battery (Fig. 4) used to power Polaroid instant cameras. Its thin, flat construction makes possible electrodes with large surface areas. That, in turn, gives it a large capacity-as much as 19 amperes of instantancous current! A Polapulse experimenter's kit is available from Powercard Corporation, 391 Totten Pond Road, Waltham, MA 02154 (617) 890) 6789. The P100 Designer's Kit contains five Pl00 batteries and a special holder for them; it costs \(\$ 17.50\), and Massachusetts residents must add proper sales tax.

\section*{Alkaline cells}

Alkaline cells derive their name from the fact that their electrolyte is the highly caustic base, potassium hydroxide \((\mathrm{KOH})\), rather than a slightly acidic one containing a salt such as ammonium- or zinc-chloride. The design of an alkaline cell, although superficially similar to that of a carbonzinc one, is really significantly different, as can be seen in Fig. 5.

The cathode material of an alkaline cell is EMD, the electrolytically derived manganese dioxide sometimes


FIG. 5-TYPICAL OF MANY alkaline cells is "inside-out" construction, where the cathode material is exterior to that making up the anode.

The no-load voltage developed by a carbon-zinc cell is nominally 1.5
used in carbon-zinc cells to improve performance. It is mixed with water,


FIG. 6-THE "JELLY ROLL" construction of a typical nickel-cadmium cell gives it a large electrode area. Note the vent mechanism to protect against cell rupture resulting from the generation of gases during charging.
carbon or graphite (ten percent or a bit more), and some potassium-hydroxide electrolyte. As in a Leclanche cell, the anode is made of zinc, but the metal is in finely powdered form and the cell is contained in a steel jacket. The highly purified zinc powder is treated with mercury to form an amalgam; that greatly reduces the production of hydrogen, caused by the metal reacting with the potassium hydroxide electrolyte that pervades it. The separator that is used is made of a porous woven, felted, or bonded material.

In a cylindrical alkaline cell, the central element is the anode collector, not the cathode collector used in car-bon-zinc cells. That piece, which may
be made of brass, is mechanically and electrically connected to the bottom ( - ) terminal of the cell. That sort of "inside-out" construction is frequently used in dry-cell designs.

Alkaline cells have an open-circuit rating of about 1.52 volts, and an energy density of about 45 watt-hours per pound. Their performance at temperature extremes exceeds that of car-bon-zinc types. Their low-currentdrain performance is also better, but where alkalines are best where mod-erate-to-high currents are drawn over an extended period.

\section*{Making a choice}

Carbon-zinc and alkaline cells are available in a wide variety of packag-
ings and voltages. Fortunately, if it's just a replacement battery you're looking for when you walk into the store, you don't have to worry too much about your decision. The equipment into which the replacement cell or battery will be inserted can take only a particular size, and that size is usually keyed to the voltage. What you have to concern yourself with is the way the replacement performsits behavior at various temperatures and, more important, its ability to deliver the current that your application requires. The literature provided with a dry-cell-operated device frequently recommends a specific type of cell or battery, but does not explain why that particular sort is called for. The next few paragraphs will help you to make a more informed decision about replacement cells, and in choosing a power source for something you may be designing.

Although alkaline cells have largely replaced carbon-zinc types in most applications, there are still some places where the latter will give a better price-performance ratio than the more glamorous type. Such situations are typically those where current drain is light but constant (no surges of current are called for by the device) and the operating temperature is a comfortable one. Carbon-zinc cells have a relatively short shelf or storage life, so they are best suited to applications where they will be used immediately; not where they will be expected to remain quiescent for long periods awaiting emergency use

In a C-cell-powered wall clock it may prove more economical to install a regular carbon-zinc cell than an alkaline one; while the alkaline cell may last a bit longer, its extra cost will offset any economy that might be gained from its somewhat longer life. Heavy duty carbon-zinc cells made with somewhat higher-quality materials can even be used to power small transistor radios, provided not too much demand is made of them.

Alkaline cells, with their ability to source heftier currents than carbonzinc ones and to depolarize, or recover, more quickly after heavy use, are better suited for the workload presented by much of today's consumerelectronics equipment; cassette players. boom-boxes, portable TV's, and the like. Devices that might suck car-bon-zinc cells dry in twenty minutes can run for several hours on alkalines.

An Eveready brand called the "Conductor" promotes itself as being best for audio applications. While that was the case when it was first introduced, due to the use of premium components, the design of "ordinary" alkaline cells is today virtually identical to that of the Conductor brand, and there is little, if any, difference in performance.

Other properties of alkaline cells may also make them the better choice in certain applications. They have a longer shelf or storage life, and their output voltage falls off less rapidly than does that of carbon-zinc cells. Incidentally, you can extend the storage life of carbon-zinc cells by keeping them refrigerated to slow the chemical reactions that take place in them even when they are not being used. Because those reactions take place much less actively when alkaline cells are not in use, alkaline cells do not benefit as much from refrigerated storage.

Low temperatures cause voltage drop-offs in all types of energy-producing cells and batteries. Again, alkaline cells provide greater reliability over a greater temperature range than do carbon-zinc ones. As the temperature of a carbon-zinc cell drops below freezing, its voltage, and particularly the current it is capable of delivering, fall rapidly to unusable levels. While alkaline cells are similarly affected by low temperatures, their performance is better than that of even the best carbon-zinc cells.

Don't be swayed by those commercials that say things the likes of "Ours last 30 percent longer than..." The comparison is probably being made between the manufacturer's current production and the same product as he formulated it several years ago-not between his and somebody else's products. Virtually all alkaline cells produced today by the major manufacturers are considerably longerlasting than those of a few years back due to the fact that changes in the construction of the shell (namely, reducing it to a single steel container with a thin plastic overcoating) has resulted in the ability to cram more reactive material inside. The voltage, of course, doesn't change, but the ability to deliver current does.

\section*{Rechargeable cells}

Are you tired of replacing worn-out dry cells all the time? Maybe you're


FIG. 7-LITHIUM CELLS have extremely high energy densities. The button-style packaging shown in a provides a large electrode area. Three 3 -volt lithium cells are connected in series to make a 9 -volt transistor-type battery (b).
tempted to replace them entirely with rechargeable nickel-cadmium cells. But nickel-cadmium cells (commonly called "Nicads," although that's actually a trademark owned by one manufacturer, Saft) have their pros and cons.

The internal details of a typical nickel-cadmium cell are shown in Fig. 6. The active materials are nickel oxide ( NiO ), which forms the cell's
positive plate; cadmium (Cd) for the negative plate; and the highly caustic potassium hydroxide ( KOH ) electrolyte. Several different manufacturing techniques may be used but, in general, the positive and negative electrodes form a "sandwich" with the potassium-hydroxide-saturated separator in the middle. Those three layers are wound into a jelly-roll-like spiral. The separator can be either nylon or a polypropylene material; the latter makes possible greater cell capacities. A safety vent is provided to prevent cell rupture resulting from pressure buildup during extremes of charge or discharge.
Normal-rate recharging is performed at the rate of one-tenth the rated current of a cell. For example, it takes 60 milliamperes to charge an AA-size cell rated at 600 mAh , for 14 to 16 hours. Quick-charge cells can be recharged in four to six hours, and fast-charge devices can be charged in as little as one or two hours, at much higher currents. Safeguards in the form of voltage or temperature sensors must be provided to prevent cell rupture or internal plate damage due to the high internal pressures and temperatures that may be generated during the fast-charge process.
The differences in charging rates are made possible by a number of different factors, including electrode design, and the choice of reactive materials; they are still nickel and cadmium, but in different formulations. Aside from a reduced charging time, the differences between regular-, quick-, and fast-charging cells are more or less transparent to the user. There is, however, a slight reduction in internal resistance in fast-charging cells, resulting in a nominal (on the order of millivolts) voltage increase, and the ability to better provide surge current.

Nickel-cadmium cells have a much flatter voltage-drop curve over their working life than do Leclanche and alkaline designs - a fact that may be worth considering. Immediately after charging, their open-circuit voltage is about 1.4 volts, which drops almost immediately to about 1.25 volts, a level that is maintained until their charge is nearly depleted. They can provide very large amounts of current when needed, and hold up well under conditions of continuous drain. Nick-el-cadmium cells also provide good power output under extremes of tem-


FIG. 8-RECHARGEABLE lithium cells are intended principally for maintaining the contents of solid-state memories.

\section*{perature range.}

Nickel-cadmium cells perform best when worked hard. If discharged just shallowly and then charged immediately, they will develop a "memory" for that sort of use and eventually lose some of their capacity. However, because of slight changes in cell chemistry, that's far less of a problem than it was just a few years ago. Most manufacturers insist that memory effects no longer exist. The working life of a nickel-cadmium cell on a single charge is only about 70 percent of that of an equivalent-size alkaline cell.

Nickel-cadmium cells are most useful where they can be built into a device and the charging current supplied from the outside through a jack, or internally, directly from it. If rechargeables are used as replacements for throwaway primary cells, you generally face the inconvenience of removing them from the device for charging, and then removing them again from the charger and replacing them in their compartment for use. When replacing old or worn-out cells in a nickel-cadmium battery pack, replace them all at once-mixing old and new ones can lead to the weakest of them reversing its polarity and affecting the life and performance of the entire pack

Rechargeable lead-acid cells and batteries (similar to the one in your car, but smaller) use lead, lead oxide, and sulphuric acid, and come with a gelled electrolyte that allows them to be used in portable equipment without fear of spillage. Lead-acid technology is also available in the form of sealed D-size cells. The nominal voltage of a lead-acid cell is 2.0 volts, and it is capable of sustaining very high rates of discharge. The performance of lead-acid cells falls off at cold and
very warm temperatures. Unlike nickel-cadmium cells, lead-acid cells must be kept well-charged if you expect them to perform efficiently over a long lifetime.

\section*{Lithium cells}

Lithium is an extremely reactive metal, and its high place in the electromotive series makes it an excellent candidate for inclusion in energy cells. Unfortunately, its high degree of activity (it reacts violently with water, for example) makes it difficult to work with. Many of the difficulties have been overcome, however, and lithium-based cells are now found widely in watches, cameras, calculators, and in situations where a small trickle of current is required to maintain the contents of solid-state memory in a standby state. Lithium cells are very efficient, with energy densities on the order of 90 watthours per pound. The major reason lithium cells are not more widely used (although that is changing) is the difficulty in manufacturing large-size ones that are safe to use.

Although there are a number of lithium-cell formulations, the one using lithium, manganese dioxide \(\left(\mathrm{MnO}_{2}\right)\) and a lithium perchlorate \(\left(\mathrm{LiClO}_{4}\right)\) electrolyte in an organic solvent (water cannot be used, remember) makes up about 70 percent of the lithium-cell market. Carbon monofluoride is also used. Much of the remaining portion consists of cells made using a lithium-carbon-thionyl chloride \(\left(\mathrm{SOCl}_{2}\right)\) formulation. Figure 7-a shows the construction of a typical lithium "button" cell; Fig. 7-b shows how Kodak combines three manganese-dioxide-type lithium cells in one package to produce a nine-volt, "transistor-type" battery.

The output of a lithium \(/ \mathrm{MnO}_{2}\) cell is nominally three volts; in some applications it may be possible to replace two 1.5 -volt carbon-zinc or alkaline cells with one lithium one. By using a lithium/ferric-sulphide ( \(\mathrm{FeS}_{2}\) ) combination, a lightweight and powerful 1.5 -volt cell can be produced. One of the great benefits of using lithium cells is their extremely long shelf life; five years or even ten. Under conditions of low drain, their useful working life may almost equal that figure

A rechargeable lithium \(/ \mathrm{MnO}_{2}\) button cell has recently been introduced by Sanyo (see Fig. 8). It is intended
primarily as a replacement for the \(\mathrm{Ni}^{-}\) Cd cells and large-value capacitors used in keeping memory circuits alive.

\section*{Other types}

While the types of energy cells already described can fill most electronics needs, actual and anticipated, there are a few additional kinds that bear mentioning.

Mercury cells have long been used as a compact power source in devices such as hearing aids and cameras. They use a mercuric-oxide cathode, powdered-zinc anode, and a potassium hydroxide \((\mathrm{KOH})\) or sodium hydroxide ( NaOH ) electrolyte. The output voltage is 1.3 volts, and remains stable over a long life of storage or use. Silver-oxide cells are also used for similar applications (see Fig. 9).


FIG.9-THIS SILVER OXIDE battery is often used in cameras.

Another type of energy cell found in hearing aids and watches is the zinc-air, or just plain "air," cell. It uses atmospheric oxygen to produce electrochemical energy. Zinc-air button cells use a powdered-zinc-with-potassium-hydroxide-electrolyte anode and have a very thin cathode region incorporating a catalyst. Oxygen in the air provides the cathode material. Although they are not able to output large amounts of current, zinc-air cells have very high energy densities. Because air is kept out by a pull tab until a zinc-air cell is ready to be used, its shelf life is exiremely long. A zinc-air cells's output voltage of about 1.4 volts remains stable over a working life of several hundred hours before falling rapidly to an unusable level.

There are, of course, still many more types of energy-producing cells, primary and secondary. Some are being produced today, some are still in the experimental stage, and others have been abandoned either for practical reasons or because they have been rendered obsolete by newer battery designs.

\title{
WORKING WITH AUDIO POWER AMP IC'S
}

\section*{Building your own amplifier circuits for audio applications doesn't have to be difficult. In this article we show you how easy it is to use several of the more popular audio-amplifier IC's.}

AN IDEAL AUDIO POWER AMPLIFIER CAN BE simply defined as a circuit that can deliver audio power into an external load without generating significant distortion, and which does so without overheating or consuming excessive quiescent current. In practice, circuits that come very close to that ideal can easily be built using modern integrated circuits.

Simple audio-power amplifiers with outputs up to only a tew hundred milliwatts can be easily and cheaply built using little more than a standard op-amp and a couple of general-purpose transistors. For higher power levcls, a wide range of special-purpose "single" or "dual" audio-power amplitier IC's are available. which can provide maximum outputs ranging from a few hundred milliwatts to roughly 20 watts. The specific \(1 C\) chosen for a given application depends mainly on the constraints of the available power-supply voltage and on the required output power. This article will look at a wide selection of practical lC-based audio-power amplifier circuits

\section*{Low-power circuits}

The ever-popular general-purpose 741 operational amplifier can supply peak output currents of at least 10 mA , and can provide peak outputvoltage swings of at least 10 volts into a IK load when powered from a dual power supply of plus- and minus- 15 volts. The 1 C can supply peaks of about 100 mW into a 1 K load. Among the reasons for the 741 's popularity is that it can easily be used as a simple low-power audio amplifier, as shown in Figs. 1 and 2.

Figure 1 shows how to use the 741 with a dual power supply. There, the external load is direct-coupled be-


FIG. 1-LOW-POWER AMPLIFIER using dual power supplies.


FIG. 2-LOW-POWER AMPLIFIER using a single-ended power supply.


FIG. 3-BASIC BOOSTED-OUTPUT-current unity-voltage-gain op-amp circuit.
tween the op-amp output and ground, and the two input terminals are ground-referenced. The op-amp is operated in the non-inverting mode, and has a voltage gain of \(\times 10(\mathrm{R} / / \mathrm{R} 2)\) and an input impedance of \(47 \mathrm{~K}(\mathrm{R} 3)\).
Figure 2 shows how to use the circuit with a single-ended power sup-
ply. In that case, the external load is AC-coupled between the output and ground, and the output is biased to a quiescent value of half of the supply voltage (to give maximum outputvoltage swing) via the RI-R2 divider. The op-amp is operated in the unitygain non-inverting mode, and has an input impedance of 47 K (R3).

In Figs. 1 and 2, the external load must have an impedance of at least IK. If the external speaker has an impedance lower than that, the resistor \(\mathrm{R}_{\mathrm{X}}\) must be connected as shown to the schematic to raise the load to a total of \(l K\); \(R_{X}\) inevitably reduces the amount of power that actually reaches the speaker.

\section*{Boosted-output circuits}

The available output current (and thus the power) of a standard op-amp can easily be boosted by wiring a complementary emitter-follower between its output and its non-inverting input terminal, as shown in Fig. 3. Note that the circuit is configured to give an overall unity voltage gain, but that the base-emitter junctions of Q I and Q2 are both wired into the nega-tive-feedback loop of the circuit, so that their effective forward-voltage drops (approximately \(6(0) \mathrm{mV}\) ) are reduced by a factor equal to the openloop voltage gain of the op-amp. So, if the open-loop gain is 10,000 then the effective forward voltage drops of QI and Q2 are cach reduced to a mere \(6 \mu \mathrm{~V}\), and the circuit generates negligible signal distortion

In practice, the open-loop voltage gain of an op-amp actually falls off at a rate of about \(20 \mathrm{~dB} /\) octave, so that although the signal distortion of the circuit in Fig. 3 may be insignificant at 10 Hz , it may become quite objectionable at 10 kHz . That problem can


FIG. 4-OP-AMP POWER AMPLIFIER using dual supplies; output power is about 280 mW , maximum.


FIG. 5-OP-AMP POWER AMPLIFIER using a single-ended supply.
be overcome by applying a small amount of forward bias to Q1 and Q2, as shown in Figs. 4 and 5, so that the ir forward-voltage drops are reduced to near-zero and the result is that the distortion is minimized.
The circuits of Figs. 4 and 5 are designed to produce output currents up to 350 mA peak, or \(50-\mathrm{mA}\) RMS into a load of at least 23 ohms, thereby producing up to 280 mW RMS. The limitations are determined by the current/power ratings of Q1 and Q2, and by the power-supply voltage. The Fig. 4 circuit is designed for use with dual power supplies, and gives a voltage gain of 10 . The Fig. 5 circuit uses a single-ended supply, and has unity voltage gain.

\section*{Power-amplifier basics}

If output powers in the approximate range from 200 mW to 20 watts are needed. the most cost-effective way of getting them is to use a dedicated IC to do the job. A wide range of such IC's are available, in either "single" or "dual" form. Most of them take the eflective form of a simple op-amp with complementary emitter-follower output stage (like Figs. 3-5); they have differential input terminals and can provide high output current/ power. but consume a low quiescent current.


FIG. 6-AN AMPLIFIER CONNECTED in the single-ended output mode gives a peak output of \(V^{2} / R\) watts.
tion of Fig. 6, the peak available output power equals \(V^{2} / \mathrm{R}\), where " \(V\) " is the peak available output voltage. Note, however, that the available output power can be increased by a factor of four by connecting a pair of amplifier IC's in the "bridge" configuration shown in Fig. 7, in which the peak avaitable load power equals \(2 \mathrm{~V}^{2} /\) R. That power increase can be explained as follows:

In the single-ended amplifier circuit of Fig. 6, one end of \(R_{L}\) is grounded, so the peak voltage across \(\mathrm{R}_{\mathrm{L}}\) equals the voltage at point A . On the other hand, in the circuit in Fig. 7, both ends of \(R_{L}\) are "floating" and are driven out of phase; and the voltage across \(\mathrm{R}_{1}\) equals the difference between points A and B. Figure 7 also shows some waveforms when the circuit is fed with a 10 -volt p-p square wave. Although the waveforms at points A and B have peaks of 10 volts relative to ground, the two signals are \(180^{\circ}\) out of phase. Therefore, during period 1, point B is 10 -volts positive with respect to point A. Consequently, if point A is regarded as the reference point, it can be seen that the point \(B\) varies from +10 to -10 volts between periods 1 and 2 , giving a total swing of 20 volts across \(R_{\text {L }}\).

The load in the 10 -volt bridge-driv-


FIG. 7-A PAIR OF AMPLIFIERS connected in the bridge configuration gives a peak output of \(2 \mathrm{~V}^{2} / \mathrm{R}\) watts; four times the power of a single-ended circuit.

When a power amplifier is connected in the single-ended configura-
en circuit sees a total 20 -volts p-p, or twice the single-ended input-voltage,


FIG. 8-INTERNAL CIRCUIT and pin connections of the LM386 low-voltage audio-power amplifier.
put terminals are both ground-reterenced, and have typical input impedances of 40 K .

The internal circuit of the LM386 is shown in Fig. 8. Here, Q1 to Q6 form a differential amplifier in which both inputs are tied to ground via 50 K resistors (R1 and R2) and the output of Q3 is direct-coupled to the input of common-emitter amplifier Q7. The collector signal of Q7 is direct-coupled to the output terminal of the IC via Class-B unity-gain power amplifier stage Q8-Q9-Q10 which, to minimize the internal volt-drops and maximize the available output power. is not provided with overload protection circuitry.


FIG. 9-A MINIMUM NUMBER OF PARTS are needed for this LM386 amplifier with \(A_{V}=20\).


FIG. 10-LM386 AMPLIFIER with 6 dB of bass-boost at 85 Hz .
as indicated in the diagram. Since doubling the drive voltage results in a doubling of drive current, and power is equal to the current times the voltage ( \(\mathrm{P}=\mathrm{IV}\) ), the bridge-driven circuit produces four times more power than a single-ended circuit.

\section*{LM386 basics}

The LM386 audio-power amplifier


FIG. 12-INTERNAL CIRCUIT AND PIN CONNECTIONS of the LM389 low-voltage audiopower amplifier with NPN transistor array.
(manufactured by National Semiconductor) is specifically designed for operation with power supplies in the 4-12-volt range. It is housed in an 8 pin DIP, consumes a quiescent current of only a few mA , and is ideal for use in battery-powered applications. The voltage gain of the IC is variable from 20 to 200 via external connections, and its output automatically centers on a quiescent value of halfsupply voltage. The device can feed several hundred milliwatts into a 8 ohm load when operated from a 12 volt power supply. Its differential in-


FIG. 11-AM-RADIO POWER AMPLIFIER.


FIG. 13-BASIC CIRCUIT CONNECTIONS of the LM389 IC.

\section*{LM386 applications}

The LM386 is a very casy IC to use. The voltage gain of the IC is equal to the value of the pin-1-to-pin- 5 impedance ( 15 K in Fig. 8), divided by the impedance between the emitters of Q1 and Q3 (R5 + R6 in Fig. 8). Thus, the IC can be used as a minimum-parts amplifier with an overall voltage gain of 20 by using the simple connections shown in Fig. 9. In that circuit, the load is AC-coupled to the IC output via C2, and the input signal is connected to the non-invert-
ing terminal via R 2 . Note that Cl is used to RF-decouple the \(+V\) supply (pin 6), and RI-C3 is an optional Zobel network that gives HF outputloading stability.

Note that in Fig. 9, pins 1 and 8 are not used. However, if you connect a \(10-\mu \mathrm{Felectrolytic}\) between pins I and 8 (the positive end comnected to pin 1), you can change the overall gain of the circuit to 200; that's because the capacitor effectively shorts out the IC's internal 1.35 K resistor. If a 1.2 K
resistor is wired in series with a \(10-\mu \mathrm{F}\) electrotytic between pins 1 and 8 , the overall gain will be 50 .

The voltage gain of the LM386 can also be varied by shunting the effective value of the internal pin-5-to-pin-1 15 K feedback resistor. Fig. 10 shows how to shunt that resistor with C4-R2, to give \(6-\mathrm{dB}\) of bass boost at 85 Hz , to compensate for the poor bass response of commonly used inexpensive speakers.
Figure 11 shows how the LM386


FIG. 14-CERAMIC PHONO AMPLIFIER with tone controls, using an LM゙389.


FIG. 15-LM389 WHITE-NOISE sound generator.


FIG. 16-INTERNAL CIRCUIT and pin connections of the LM388 1.5-watt audio-power amplifier.


FIG. \(\overline{17}-\overline{L M} \overline{3} \overline{8} \overline{8}\) WITH A GAIN OF 20 and load returned to ground.
amplifier can be modified for use as a built-in amplifier in an AM radio. Here, the detected AM signal is fed to the non-inverting input of the IC via volume-control R3, and is RF-decoupled via R1-C3; any residual RF signals are blocked from the load via a ferrite bead. The voltage gain of the amplifier is set at 200 via C4. Note that the circuit is provided with additional power-supply ripple rejection by wiring C5 between pin 7 and ground, and that the ripple-rejection capacitor can also be used with Figs. 9 and 10 if required.

\section*{LM389 circuits}

The LM389 (Fig. 12) contains an array of three wide-band and independently accessible NPN transistors on the same substrate as an audio-power amplitier that is almost identical to that of the LM386. The IC can be used with any power supply in the + to 12 -volt range. The three NPN transistors have closely matched characteristics, can be operated with collector currents in the range from I \(\mu \mathrm{A}\) to 25 mA at frequencies up to 100 MHz , and each have typical current gains of 275. Also note that QI, Q2 and Q3 are independently accessible.

Figure 13 shows the LM389 in a basic circuit. The internal power amplifier is used in the same way as the LM386: the gain of the auplifier is controlled by C 4 and \(\mathrm{R}_{X}\), between pins 4 and I2. If those two components are absent, the voltage gain is 20. If the two components are in place, and \(R_{X}\) has a value of 1.2 K , the gain is 50 . If \(\mathrm{R}_{\mathrm{X}}\) is replaced with a short-circuit, the gain rises to 200 . Note that the power amplifier can be used as either an inverting or non-
inverting amplitier by connecting the external signal to the appropriate input terminal.

Figures 14 and 15 show practical applications of the LM389, making


FIG. 18-LM388 WITH A GAIN OF 20 and load returned to \(+V\) supply.
use of the internal transistors. In the phono amplifier of Fig. It, which is intended for use with a ceramic pichup, Q3 acts as a voltage-following input buffer giving an input impedance of about 80 K , and Q 1 and \(\mathrm{Q}_{2}\) are used to make an active tone-control network with its output feeding to the non-inverting input of the power amplitier via the volume-control potentiometer. In the white-noise generator circuit of Fig. 15. Q3 is wired as a noise-generating Zener diode; the noise signal is amplified via \(Q 2\) and then fed to the inverting input terminal of the power amplifier, which is wired in the 200 voltage-gain mode.

\section*{LM388 circuits}

The L.M388 (Fig. 16) can be regarded as a slightly modified version of the LM386. The device is housed


FIG. 19 -LM388 BRIDGE AMPLIFIER delivering 4 watts to an 8 -ohm load.


FIG. 20-INTERNAL CIRCUIT AND PIN CONNECTIONS of the LM380 2-watt and LM384 5watt audio-power amplifier IC's.


FIG. 21-IN THIS CIRCUIT, IF IC1 is an LM380, powered from 18 volts, the circuit will produce 2 watts, and if IC1 is an LM384, powered from 22 volts, it will produce 5 watts. The circuit also has simple volume control and ripple rejection.
in a 14-pin DIP with an internal heat sink, and can feed 1.5 watts into an 8 ohm speaker when powered from a 12-volt supply. The most signiticant internal difference between the LM388 and the LM386 concerns Q7. and an internal constant-current collector load in the LM388. That "extermal load" feature gratly incrases the versatility of the IC.

Figure 17 shows one way of using the 1 M 388 . Here R 1 and R 2 are wired in series between the positive supply line and pin 9, to provide collector cument to the internal Q7. Note that the R1-R2 junction is bootstrapped from the output of the 1 C via C 2 , to raise the AC impedance of R 2 (and thus the voltage gain of Q 7 ) to a value far greater than its DC value. The overall voltage gain of the LM388 is determined in the same way as in the LM386, and equals 20 in Fig. 17. Pins 2 and 6 were not used in Fig. 17, but if you wire a \(10-\mu\) Felectrolytic between those two pins (with the positive end connected to pin 6), the gain can be increased to 200 .

Figure 18 shows an alternative way of using the LM388 where direct current (DC) is led to pin 9 via the speaker and RI. Note, however, that the "low" end of the speaker is AC-driven by the output of the amplifier, thereby bootstrapping R1 and providing RI with a high AC impedance. The circuit therefore gives a performance that is somewhat similar to that of Fig. 17, but does so with a saving of two components.

Finally, Fig. 19 shows how to connect a pair of LM388 IC's in the Continued on page 84

\section*{PC Service}


AUDIO VOLUME LIMTER FOIL PATTERN.


ION METER FOIL PATTERN.


UNIVERSAL POWER SUPPLY FOIL PATTERN.

\title{
Hardware
} Hacker

\section*{LVDT position detectors \\ Treasure finding circuitry Switchable analog inverter Synchronous demodulators Desktop accessories contest}

\section*{Synchronous demodulation}

\section*{DON LANCASTER}

THIS MONTH, I FIGURED WE'D LOOK AT a rather mis-named integrated circuit that has an unbelievable future hacker potential. But first, as usual, let's pick up some background...

\section*{Programmable analog inverter}

Figure 1 shows you my favorite "sleeper" circuit found in my CMOS Cookbook. It's a singleended and simple op-amp circuit that gives you a choice of a +1 or - 1 gain under manual or electronic control.
You can analyze most any opamp circuit by treating the ( - ) and \((+)\) input sources separately. By a fundamental electronic law called superposition, you can get a combined final result.
Assume that we have a fairly lowimpedance input source which also provides a resistive path to ground. Suppose we close the switch; the ( + ) input sees only the resistor to ground and the ( - ) input acts as an amplifier with a gain of -1 , since the input resistor and the feedback resistor are identical.
As with any op-amp, the ( - ) input can be treated as a virtual ground, since any deviation from the grounded ( - ) input will cause an output change that reaches back around through the feedback resistor to continually seek a zero difference between the \((+)\) and ( - ) op-amp inputs.

What if we open the switch? Well, we still have one input signal along the top that still has a gain of -1. But now there's a new inputsignal path along the bottom, which has a gain of +2 . Because of
the feedback action, the ( - ) input of a properly connected op-amp will be a virtual ground "short circuit," while the ( + ) input will be a high impedance "open circuit."

Hmmm...the gain along the top is \((-1)\). The gain along the bottom is +2 . And, the last time 1 checked, \((-1)+(+2)=+1\). So, close that switch and you'll get a gain of
1. Open the switch and you get a gain of +1 . Presto! A programmable linear inverter.

Your switch can be a manual one, or else a higher-speed electronic one. A quarter of a CMOS 4066 is often an ideal choice for that sort of thing.

As we will shortly see, there are zillions of uses for the circuit. One obvious place is as a video inverter, used to create negative video images for special needs. To create a video inverter, you take the circuit and add a sync separator, such as the National LM1881, and set things up to invert only your video portions but not the sync portions. Naturally, a video-quality op-amp would be needed for that use. Additional bias current can be switched in as needed to get the correct signal levels. But we'll save that for some other time, because what I really want to get into here are the secrets behind..

\section*{NEED HELP?}

Phone or write your Hardware Hacker questions to:
Don Lancaster
Synergetics
Box 809-RE
Thatcher, AZ, 85552
(602) 428-4073

\section*{Synchronous demodulation}

The switch in Fig. 1 could be turned on and off at very slow rates compared to your input-signal frequency. Or at equal rates. Or even at much higher rates. Now, if you turn the switch on and off at precisely the same speed as your input signal, you create a beastie that is known as a synchronous demodulator.

Synchronous demodulators form a super-important electronic concept used just about everywhere. A sync demod's name can change all over the place, being otherwise known-as an autocorrellator, a lock-in-amplifier, a doubly balanced modulator, a phase-sensitive detector, \(1-Q\) demodulator, synchronous rectifier, a phase-locker, or, going back to some really ancient history, as a homodyne detector.
Figure 1 can also be used as a modern and handy sync demod circuit. What is especially nice is that it's a single-ended circuit which needs no transformers of any kind.

In general, any synchronous demodulator demod is an electronic multiplier that extracts the sum and the difference between your input-frequency signal and your reference switching frequency.

For instance, Fig. 2 shows you what happens if we keep the input and switching frequencies identical, but shift their phases. Let's first assumethat ther e is a zero phase difference between signal and reference.
The amplifier's gain will be ( +1 ) for the positive signal peaks, and
(-1) for the negative signal peaks, giving us a plain old full-wave rectifier. The "DC term" here will be a direct current level equal to the strength or amplitude of the input signal. The "lumps" will be a dou-ble-frequency and higher "AC term" that is usually filtered out. Thus, the zero-phased synchronous demodulation should extract only the amplitude of an input signal.
Suppose we next shift the phase by 180 degrees. This time, your gain is ( -1 ) for the positive lumps and ( +1 ) for the negative lumps of the signal. We get a negative output, and we could conclude that any 180 degree phased synchronous demodulation extracts only the negative of the amplitude of the input signal.
Now, let's get interesting. Suppose we shift the phase to 90 degrees. What happens? Well, nothing at all. During the time that the switch is closed, we have half of a positive cycle and half of a negative cycle, so our net (or average) DC output is zero. Very handily, any synchronous demodulation at a 90 -degree phasing produces a zero output. And, since nothing upside down is still nothing, a similar cancellation happens at -90 or +270 degrees.
But wait a minute. If we get zero output at a 90 -degree phase, can't we double the information placed on a carrier, simply by having an inphase term and a 90-degree, or quadrature term? We sure can, and it gets done all the time.

For instance, the color information on an NTSC (Never The Same Color) television is placed onto a magic sub-carrier of 3.57545 Megahertz. The hue of the color is the phase angle, while the saturation of the color sets your amplitude. At the receiver, a phase-locked loop does an in-phase " 1 " and a quadrature " Q " demodulation. After further processing, all the separate amplitudes are extracted for the red, blue, and green guns in the display tube. Thus, we have used a pair of synchronous demodulators to extract both the amplitude and phase of a complex signal at the same time.
Let's look at some additional uses for synchronous demodulation. If you hard limit the input


FIG. 1-A PROGRAMMABLE GAIN AMPLIFIER. When the switch is closed, the gain is -1 . When the switch is opened, the gain is +1 . One important circuit use is for synchronous demodulation.

\section*{NAMES AND NUMBERS}

American Design Components
815 Fairview Ave
Fairjiew, NJ 07022
(800) 776-3700

CIRCLE 275 ON FREE INFORMATION CARD
AST Servo Systems
115 Main Road Box 97
Mortville, NJ 07045
(201) 335-1007

CIRCLE 276 ON FREE INFORMATION CARD
Calogic
237 Whitney PI
Fremont, CA 94539
(415) 656-2900

CIRCLE 277 ON FREE INFORMATION CARD

\section*{Car Audio}

2176 Oxnard St, Ste 1600
Woodland Hills, CA 91367
(818) 593-3900

CIRC _E 278 ON FREE INFORMATION CARD
Chips \& Technology
305J Zanker Rd
San Jose, CA 95134
(408) 434-0600

CIRCLE 279 ON FREE INFORMATION CARD

\section*{Chomerics}

77 Dragon Court
Woburn, MA 01888
(800) 225-1936

CIRCLE 280 ON FREE INFORMATION CARD
Linear Technology
1630 McCarthy Blvd
Milpitas, CA 95035
(408) 432-1900

CIRC _E 281 ON FREE INFORMATION CARD
Measurement \& Control
2994 W Liberty Ave
Pittsburgh, PA 15216
(412) 343-9666

CIRCIE 282 ON FREE INFORMATION CARD

Midnight Engineering PO Box 7041
Fort Collins, CO 80525 (303) 491-9092

CIRCLE 283 ON FREE INFORMATION CARD

\section*{Motorola}

5005 E McDowell Rd
Phoenix, AZ 85008
(602) 244-6900

CIRCLE 284 ON FREE INFORMATION CARD
National Semiconductor
2900 Semiconductor Dr
Santa Clara, CA 95051
(408) 721-5000

CIRCLE 285 ON FREE INFORMATION CARD

\section*{OrCAD}

3175 NW Aloclek Dr
Hillsboro, OR 97124
(503) 690-9722

CIRCLE 286 ON FREE INFORMATION CARD

\section*{Phillips}

45 George Washington Hwy
Midfield, RI 02917
(401) 232-0500

CIRCLE 287 ON FREE INFORMATION CARD

\section*{Sensors}

174 Concord St
Peterborough, NH 03458
(603) 924-9631

CIRCLE 288 ON FREE INFORMATION CARD

\section*{Synergetics}

Box 809
Thatcher, AZ 85552
(602) 428-4073

CIRCLE 289 ON FREE INFORMATION CARD
Texas Instruments
PO Box 809066
Dallas, TX 75380
(800) 232-3200

CIRCLE 290 ON FREE INFORMATION CARD
signal to your sync demod so that it's a clean square wave, then you will provide phase detection. Go through the math, and you will find that the output voltage is a triangle which linearly equals the phase angle between the input and the reference. You can then use your sync demod to measure the phase angle between two input signals.

Suppose we would synchronously demodulate one signal and, at the same time, apply an interfering signal of a different frequency. Your "wanted" signal will always be in phase and will always produce a DC output equal to its amplitude. The "unwanted" signal will create a sine wave as it "slips cycles" with respect to the wanted one. Any sine wave averages to zero over a long enough time. We apparently have a way of detecting one signal while rejecting an interfering one.

Certain types of sync demods are called lock-in amplifiers. They can form an extremely narrow bandpass filter that automatically

\section*{NEW FROM DON LANCASTER}
\begin{tabular}{ll}
\multicolumn{2}{c}{ HANDS-ON BOOKS } \\
Hardware Hacker Reprints II & 24.50 \\
Ask The Guru Reprints I or II & 24.50 \\
CMOS Cookbook & 18.50 \\
TTL Cookbook & 16.50 \\
Active Filter Cookbook & 15.50 \\
Micro Cookbook vol I or II & 16.50 \\
Enhancing your Apple I or II & 17.50 \\
AppleWriter Cookbook & 19.50 \\
Apple Assembly Cookbook & 21.50 \\
Incredible Secret Money Machine & 10.50 \\
LaserWriter Reference (Apple) & 19.50 \\
PostScript Cookbook (Adobe) & 16.50 \\
PostScript Ref. Man. (Adobe) & 22.50 \\
PostScript Prog. Design (Adobe) & 22.50 \\
Real World Postscript (Roth) & 22.50 \\
\end{tabular}

\section*{UNLOCKED SOFTWARE}

LaserWriter Secrets (le/Mac/PC) 29.50 PostScript Show \& Tell
Intro to PostScript VHS Video
PostScript Beginner Stuff PostScript Perspective Draw PostScript Technical Illustrations PostScript Work in Progress PostScript BBS stuff
Absolute Reset lle \& Ilc
AppleWriter/Laserwriter Utilities Enhance I or II Companion Disk AppleWriter CB or Assy CB Disk
free voice helpline

\section*{SYNERGETICS \\ Box 809-RE \\ Thatcher, AZ 85552 (602) 428-4073}

CIRCLE 83 ON FREE INFORMATION CARD


When the reference and the signal are in phase (0 degrees), a strong dc term is produced that is proportional to the strength of the input signal.
The second harmonic and higher ac frequencies are usually strongly tittered out, leaving only a dc term.

When the reference and the signal are in quadrature ( 90 degrees), a zero dc term is produced, completely rejecting the input signal.

Values very near a quadrature or 90 degree phase are often used tor phase measurements or for FM demodulation.


When the reterence and the signal are out of phase by 180 degrees, a strong negative dc term is produced that is proportional to the input signal.
Note that the circuit of figure one is 180 degree phased, unless you purposely invert the reference input signal.


When the reference and the signal are at -90 or +270 degrees, a zero dc term is produced, once again completely rejecting the input signal.

Because of quadrature rejection, twice as much information can be put onto a synchronously demodulated carrier.

FIG. 2-SYNCHRONOUS DEMODULATOR WAVEFORMS. At 0 degrees reference phasing, the "DC" portion of the output is proportional to the input amplitude, and interfering signals are strongly rejected. At 90 degrees, the "DC" portion is zero, and the input signal itself gets strongly rejected.
centers on the frequency of interest, and can yield tremendous improvements in signal to noise ratios.

As an example, it is not unknown for your lock-in amplifier to cleanly extract a signal that is buried in noise that can be as much as 120 decibels stronger than the signal you want. Important uses here include extracting data from deep-space probes, and doing any laboratory and medical instrumentation that measures very weak signals in the presence of much larger interfering noise and \(A C\) hum.

A not-quite synchronous demodulation will output a sine wave
equal to the difference between the reference and input frequencies. That is a simple example of a downconverting, or mixing of one signal against another to get a frequency difference.

By using a pair of sync demods, you can not only extract the frequency difference, but also determine which of the frequencies are higher.

The doppler signal extraction in a side-looking radar is one major use. Separately, synchronously demodulating a shaft encoder can give you both speed and direction information. Flangers for electronic music synthesizers use a similar principle.

\section*{PRINTING RESOURCES}

American Printer 29 N Wacker Drive Chicago, IL 60606 (312) 726-2802

CIRCLE 291 ON FREE INFORMATION CARD

\section*{Font \& Function}

PO Box 7900
Mountain View, CA 94039
(800) 833-6687

CIRCLE 292 ON FREE INFORMATION CARD

\section*{Graphic Arts Monthly}

249 W 17th Street
New York, NY 10011
(212) 463-6834

CIRCLE 293 ON FREE INFORMATION CARD

\section*{Graphic Arts Product News}

29 North Wacker Drive
Chicago, IL 60606
(312) 726-2802

CIRCLE 294 ON FREE INFORMATION CARD

\section*{High Volume Printing}

Box 368
Northbrook IL, 60065
(312) 564-5940

CIRCLE 295 ON FREE INFORMATION CARD

\section*{In-Plant Printer}

Box 368
Northbrook, IL 60065
(312) 564-5940

CIRCLE 296 ON FREE INFORMATION CARD
In Plant Reproductions
401 North Broad Street
Philadelphia, PA 19108
(215) 238-5300

CIRCLE 297 ON FREE INFORMATION CARD

\section*{Instant Printer}

Box 368
Northbrook, IL 60065
(312) 564-5940

CIRCLE 298 ON FREE INFORMATION CARD
Print Equipment News
Box 5540
Glendale, CA 91221
(818) 954-9495

CIRCLE 299 ON FREE INFORMATION CARD

\section*{The Printers Shopper} PO Drawer 1056
Chula Vista, CA 92012
(800) 854-2911

CIRCLE 300 ON FREE INFORMATION CARD

\section*{Printing Impressions}

401 North Broad Street
Philadelphia, PA 19108
(215) 238-5300

CIRCLE 301 ON FREE INFORMATION CARD

\section*{Printing Journal}

Box 91447
Pasadena, CA 91109
(818) 793-7901

CIRCLE 302 ON FREE INFORMATION CARD

\section*{Prirting News}

245 W 17th Street
New York, NY 10011
(212) 463-6727

CIRCEE 303 ON FREE INFORMATION CARD

\section*{Publishing Technology}

401 North Broad Street
Philadelphia, PA 19108
(215) 238-5300

CIRCLE 304 ON FREE INFORMATION CARD

\section*{Quick Printing}

1680 SW Bayshore Blvd
Pori St Lucie, FL 34984
(407) 879-6666

CIRCLE 305 ON FREE INFORMATION CARD

\section*{Screen Printing}

407 Gilbert Avenue
Cincinatti, OH 45202
(513) 421-2050

CIRCLE 306 ON FREE INFORMATION CARD

\section*{Type World}

15 Oakridge Circle
Wilmington, MA 01887
(61?) 658-6876
CIRCLE 307 ON FREE INFORMATION CARD

\section*{U\&IC}

2 Dag Hammarskjold Plaza
New York, NY 10017
(212) 371-0699

CIRCLE 308 ON FREE INFORMATION CARD

For a really strange use of a sync demod, high-power rectifiers always have a forward drop associated with them of a volt or more that can cause all sorts of ineffi-
ciencies, especially with low-voltage solar-panel power conversions. But power transistors can have significantly lower forward drops if they are properly


No costly School. No commuting to class The Original Home-Study course prepares you for the "FCC Commercial Radiotelephone license". This valuable license is your "ticket" to thousands of exciting jobs in Communications, Radio-TV. Microwave. Computers. Radar. Avionics and more! You don't need a college degree to qualify. but you do need an FCC License No Need to Quit Your Job or Go To School This proven course is easy. fast and low cost! GUARANTEED PASS - You get your FCC License or money refunded. Send for FREE facts now. MAIL COUPON TODAY!

\section*{COMmAND PRODUCTIONS}

FCC LICENSE TRAINING, Dept. 90
P.O. Box 2824, San Francisco, CA 94126 Please rush FREE details immediately! NAME ADDRESS
CITY
STATE ZIP
ZIP


Over 75\% of VCR failures are due to mechanical problems.
If you fix or maintain VCR's, TENTEL offers fast, universal, easy to use gauges for diagnosing mechanical tape transport problems. Powerful tools for measuring torque, tape tension, spindle height, tape guide height, head protrusion, drum eccentricity and more! You can't afford to just guess when your customers and your future depends on professional service, done right the
first time. FREE CATALOG, Also Video


\title{
SELECT for only \({ }^{\$ 3}{ }^{95}\)
} 5 воокя
(values to \$138.70) and get a FREE Gift!


\(3034 \quad \$ 19.95\)
\(3175 \quad 523.95\)

\(3096 \quad \$ 27.95\)
Counts as 2

\(\begin{array}{ll}3234 & 524.95\end{array}\)
\(3155 \quad \$ 19.95\)

\(3185 \quad \$ 34.95\)
Counts as 2
counts as 2
\(3205 \quad 524.95\)
28319514.95
\(2875 \quad 517.95\)
\(3156 \quad 523.95\)


\section*{For 25 years, your most complete source for electronics books.}

Membership Benefits - Big Savings. In addition to this introductory offer, you keep saving substantially with members' prices of up to \(50 \%\) off the publishers' prices. - Bonus Books Starting immediately, you will be eligible for our Bonus Book Plan, with savings of up to \(80 \%\) off publishers' prices. - Club News Bulletins. 14 times per year you will receive the Book Club News, describing all the current selections-mains, alternates, \(\epsilon x\) trasplus bonus offers and special sales, with scores of titles to choose from. - Automatic Order. If you want the Main Selection, do nothing and it will be sent to you automatically. If you prefer another selection, or no book at all, simply indicate your choice or the reply form provided. As a member, you agree to purchase at least 3 books within the next 12 months and may resign at any time thereafter. - Ironclad No-Risk Guarantee. If not satisfied with your books, return them within 10 days without obligation! - Exceptional Quality. All books are quality publishers' editions especially selected by our Editorial Board.

All books are hardcover unless number is followed by an "P" for paperback. (Publishers' Prices Shown)
1990 ELECTRONICS BOOK CLUB, Blue Ridge Summit, PA 17294-0810

\section*{FREE when you join!}

\section*{Here's 15 Easy Electronic Projects} From Delton T. Horn
Projects you can build-some unique. some old favorites-from the author's vast treasury of electronics know-how


\section*{10 Electhanics BarkLub}

Blue Ridge Summit, PA 17294-0810
Please accept my membership in the Electronics Book Club and send the 5 volumes listed be low, plus my FREE copy of Delton T. Horn's All-Time Favorite Electronic Projects (3105P), billing me \(\$ 3.95\) plus shipping and handling charges. It not satistied, I may return the books within ten days without obligation and have my membership cancelled. I agree to purchase at least 3 books - at regular Club prices (plus shipping/handling) during the next 12 months and may resign any time thereafter


Name
Address
City
State

Signature
Valid for new members oniy. Foreign applicants will recelve special ordering instructions. Canda must remit in U.S currency. This order subject to acceptance by the Electronics Book Club RE390


\section*{ATTENTIONE ELECTROM TEGHOCLIS \\  \\ THROUGH HOME STUDY}

Our New and Highly Effective Advanced-Placement Program for experienced Electronic Technicians grants credit for previous Schooling and Professional Experience, and can greatly reduce the time required to complete Program and reach graduation. No residence schooling required for qualified Electronic Technicians. Through this Special Program you can pull all of the loose ends of your electronics background together and earn your B.S.E.E. Degree. Up. grade your status and pay to the Engineering Level. Advance Rapidly! Many finish in 12 months or less. Students and graduates in all 50 States and throughout the World. Established Over 40 Years! Write for free Descriptive Literature

\section*{COOK'S INSTITUTE \\ OF ELECTRONICS ENGINEERING}

(A) SCHEMATIC

(B) CROSS SECTION

(C) RESPONSE

FIG. 3-LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS, or LVDT's for short, can be used for extremely precise position-to-voltage transducers. The output voltage is proportional to the core position. Microweighing is one use.


FIG. 4-THE PHILLIPS/SIGNETICS NE5520N has an internal precision sine-wave generator, a sync demod, and an extra op-amp that gets used here as an output filter. This is how to apply it as an LVDT signal conditioner. Since the chip can do so much more, it does seem a shame to waste it on LVDT uses.
overdriven as a switch. To improve the efficiency of a solar power conversion system, you create a synchronous rectifier that uses a sync demod and a pair of power transistors to replace your inefficient power diodes normally used.

Finally, one early way of detecting an AM radio station was known as a homodyne detection. Here you would synchronously demodulate your incoming signal against a reference of the same frequency as the transmitter carrier and then directly extract your audio in a single step. Unfortunately, they howled a lot as they were tuned and tended towards instability, so they were flushed in the late 1920's in favor of superheterodyne circuits that used intermediate frequency amplification, often at 455 kilohertz. Today, the old homo-
dyne deserves a fresh new look, especially when combined with digital synthesis, and the ability to put highly stable audio gain and good filtering into very small packages.
So, sync demods are easy to build and can be amazingly versatile. But, before we explore a great sync demod chip and morn real-world uses, let's briefly look at some little-used hacker components known as...

\section*{LVDT's}

An LVDT, or a Linear Voltage Differential Transformer, is shown in Fig. 3. An LVDT is a transformer which has a movable core, a single winding on the primary, and a pair of secondary windings. The secondary windings are connected in opposition, so that the output
voltage will be the difference between the two.

When the movable core is in the center, equal and opposite voltages are induced in the secondaries, and the output voltage is zero. As your core moves up, a 0 degree phased sine wave appears in your output. As it moves down, a 180-degree phased sine wave appears instead.

With careful design, you can get a linear sine-wave output voltage whose amplitude changes with position, and whose phase is (0) degrees for positions above center and (180) degrees for positions below center.

In short, an LVDT is a very precise and ultra-sensitive position-to-voltage transducer. Some LVDT devices can easily sense any motions or position changes as small as a thousandth of an inch or less. They can also be made large enough to measure distances of several feet or more.

Unfortunately for hackers, LVDT's are rather pricey, since they are both low-volume and precision components. One useful surplus source is AST Servo, while others advertise in the Sensors and Measurement and Control trade journals.

Several LVDT uses? Weigh scales, especially for microweighing; torque sensing; accelerometers; distance measurement; inclinometers; pressure transducers; for seismometry; load cells; micropositioners; and anywhere else where you want to convert a very small motion or distance change into a useful electrical signal.

For precision results, your LVDT must get driven from a pure audio sine wave of a fixed and known amplitude. Distortion could lead to bad harmonics which will in turn create output errors and other difficulties.
To further up the LVDT precision, you can use an LVDT in its servo mode. Here, you'd use feedback to move, balance, shove, or otherwise continually coerce the LVDT back to its null position. That is known as null seeking and, because of the feedback, many nonlinearities can be greatly reduced if not canceled outright.
\begin{tabular}{|c|c|}
\hline & \\
\hline \multicolumn{2}{|l|}{Descrambler Article Parts} \\
\hline \multicolumn{2}{|l|}{We stock the exact parts, PC Board and AC Adaptor for two articles published in Radio-Electronics magazine on building your own CABLE TV DESCRAMBLER} \\
\hline February 1984 issue \#701 Parts ............... 19.00 Includes ail original parts & February 1987 issue \#301 Parts ................. 29.00 Includes all original parts \\
\hline \#702 PC Board........... 7.95 Original \(3 \times 4\) etched, drilled and silk-screened pc board. & \#302 PC Board............ 7.95 Original 5x8 etched, drilled and silk-scresned pc bord. \\
\hline \#704 AC Adaptor........ 7.95 Driginal 18 voll dC 200 ma & \#304 AC Adaptor........7.95 Original 18 volt DC 200 me . \\
\hline \#701, 702 \& 704....... 29.00 & \#301, 302 \& 304....... 39.00 \\
\hline \multicolumn{2}{|l|}{Free article reprint with purchase.} \\
\hline \begin{tabular}{l}
Snooper Stopper....... 39.00 \\
Cable TV descramblers cen te detected, protect your privacy with the Snoaper Stopper Free article on cable snooping.
\end{tabular} & Macrovision Kit............ 29.00 Macrovision. now you see it, now you dan't with aur macroscrubber kit. Article was published in Radio Electronics 1987 issue. \\
\hline \multicolumn{2}{|l|}{CALL TOLL FREE 1-800-332-3557} \\
\hline \multicolumn{2}{|l|}{\begin{tabular}{l}
Out side USA 1-508-699-6935 \\
Visa. Master Card and C.O.D. \\
Add \(53.50 \mathrm{~S} \& \mathrm{H} . \mathrm{s} 6.00\) outside USA. \\
MC
\end{tabular}} \\
\hline \multicolumn{2}{|l|}{D \& D Electronics, Inc, PO Box 3310, N Attleboro, Ma. 02761} \\
\hline
\end{tabular}

While LVDT's are usually superprecise, there's no reason you can't throw one together on your own to create a low-cost position sensor. Be sure to let me know what you do come up with on that.

By another of those astounding coincidences that infest this column, it looks like we need a sync demod to extract the position info from an LVDT. But, if we have a simple and cheap circuit that does that, why limit it to LVDT uses, when so much more can be done so much better with it? Which brings us around to...

\section*{The misnamed chip}

Sometimes a manufacturer might simply put the wrong name on one of their integrated circuit chips. For instance, which of these two has the greater hacker potential: a Signetics NE5520N LVDT Signal Conditioner, or a Phillips NE5520N Universal Single Chip Treasure Finder?
As you might guess, Signetics is Phillips and, of course, the NE5520N is the NE5520N. Figure 4 shows details. What we have is a

\section*{MDABN YCB}
cleanlich/Malntitnance/hepals
EARN UP TO \$1000 A WEEK, WORKING PART TIME FROM YOUR OWN HOME!


THE MONEY MAKING OPPDRRTUNITY OF THE 1990'S
IF you are able to work with common small hand tools, and are familiar with basic electronics (i.e. able to use voltmeter, understand DC electronics).
IF you possess average mechanical ability, and have a VCR on which to practice and learn. . . then we can teach YOU VCR maintenance and repair!
FACT: up to \(90 \%\) of ALL VCR malfunctions are due to simple MECHANICAL or ELECTRO-MECHANICAL breakdowns!
FACT: over 77 million VCRs in use today nationwide! Average VCR needs service or repair every 12 to 18 months!
Viejo's 400 PAGE TRAINING MANUAL (over 500 photos and illustrations) and AWARD-WINNING VIDEO TRAINING TAPE reveals the SECRETS of VCR maintenance and repair-"real world" information that is NOT available elsewhere!
Also includes all the into you'll need regarding the BUSINESS-SIDE of running a successful service operation!

\section*{FREE INFORMATION}

CALL TOLL-FREE 1-800-537-0589
Or write to: Viejo Publications Inc 3540 Wilshire BL. STE. 310 Los Angeles, CA 90010 Dept. RE


FIG. 5-THE SENSING HEAD of an induction-balance treasure finder or a metal locator can be thought of as an LVDT in disguise. The target acts as a movable core. Synchronous demodulation can separate metal from mineral detection.
precise amplitude and low-distortion audio sine-wave generator, a synchronous demodulator, and one uncommitted op-amp you can use for output filtering, meter driving, or in-phase to quadrature conversions. The circuit shows you how to power and sense the output of an LVDT.
While you actually could use one of those chips with an LVDT, the beast should work well for an extremely wide variety of hacker stuff. Where else could we use an audio source and a sync demod?

One place could include modulated infrared alarms and communicators that can ignore both sunlight and room lighting. A second might be in the fluxgate magnetometer used in solid-state digital compasses.

How about treasure finding? I can think of at least a dozen uses here. Figure 5 shows us how the search head of an induction balance metal locator is really an LVDT in disguise.
In the absence of a buried object, the voltages induced into the output sensing coils are equal and opposite. A buried ore or a metal object will distort the transmitted field, and unbalance the output voltages.

Now for the neat part; any "metal" objects return an in-phase component to the output signal,
while "mineral" deposits, such as a well-rusted can, returns us a quadrature signal. Nicely separating the goodies from all the grunge and garbage

Thus, the NE5520N circuit can be used for in-phase discrimination of metal objects, or for quadrature discrimination of mineral objects.

To do the quadrature synchronous demodulation, just shift the phase of your reference by 90 degrees. Add a second NE5520N, and you can also add such advanced features as automatic ground tracking and the "native" soil background cancellation effects featured on the higher priced locators.

Similarly, over in those receivertransmitter styles of metal locators often chosen for pipe finding, fiber optics can be used to optically couple from the transmitter to the receiver, minimizing any field distortions an actual cable might create. A sync demod at the receiver could then be used for improved sensitivity and for metal/ mineral discrimination.
The NE5520N costs around \(\$ 7\) in smaller quantities. Supply current is around seven milliamperes, easily provided by a 9 -volt battery. While you can run the chip at +5 volts, its stability will not be as good.

For additional NE5520N circuit details and bunches of applications info, see the Industrial Linear Data Manual II offered by Phillips. Check out the NE5521N as well.

\section*{Printing resources}

As you know, each month I try to feature a Resources Sibebar which shows you where to go for the real insider stuff on unusual topics of hardware hacking interest. Sources that are difficult or impossible to quickly pin down on your own. Be sure to tell me what you want to see in future sidebars.

This month's sidebar gives you a rundown of the major sources of information on printing and printshops. What does that have to do with hardware hacking? Just this: there's a total desktop-publishing revolution going on out there, and traditional printing equipment and machinery is so utterly and outrageously priced that it simply won't hack it.
What we need instead is for all you hackers to come up with lowcost and low-end, do-it-yourself hardware kit solutions for desktop printing and book-on-demand publishing needs. To do that, hacking skills and a hacker mentality are essential. And the opportunities are pretty nigh unlimited.

What's needed? Well, for openers, here's a tiny part of my wish list:
(1) A low-cost Kroy Kolor machine that doubles as a laminator and as a printed circuit direct-toner transfer processor.
(2) A true perfect binder that gives fully professional cold-glue results for under \(\$ 99\).
(3) A sanely priced clamping paper cutter which can accurately trim 200 sheets at a time.
(4) A die punch that, in one whomp, cuts out twelve business cards from a single sheet of cover stock.
(5) A low-cost padding press.
(6) An economical and programmable folder.
(7) A simple-to-use pad printer for the "real" printing of pens, golf balls, mugs, keyholders, and such.
(8) A cheap corner rounder.
(9) A workable paper drill.
(10) Automated conversions from Continued on page 78

\section*{NEW FROM ETT}

-PCP105-MAKE MONEY FROM HOME RECORDING ..... \(\$ 10.00\). Now that you've spent a fortune on all that recording gear, MIDI and all, wouldn't you like to get some of it back? This book shows you how.
[] TELE-THE INVENTION OF TELEVISION ..... \(\$ 9.95\). How television came to be. Packed with history. 36 -pages of photos and illustrations of early equipment. A collector's delight.

\(\square\) PCP106-SYNTHESIZERS FOR MUSICIANS ..... \$10.00. All current popular forms of synthesis explained. LA, additive, phase distortion, FM and sampling. Get the sounds you want.
[] BP182-MIDI PROJ. ECTS ..... \$6.95. How to interface popular home computers with MIDI systems. Also covers interfacing MIDI gear to analog and percussion synthesizers.


\section*{mater}
\({ }_{p}^{\text {miden }}\)

BP255-INTERNA. TIONAL RADIO STA. TIONS GUIDE ..... \$8.95. Essential reference work for the casual listener, amateur radio DXer and the professional radio monitor.

BPB85-INTERNA. TIONAL TRANSISTOR EQUIVALENTS GUIDE ..... \(\mathbf{\$ 7 . 5 0}\). Find possible substitutions for a popular useroriented selection of modern transistors made by more than 100 manutacturers.

\section*{POWER SUPPLY}
continned from page 34
nate in a row on one end of the PC board. Figure 4 shows the general chassis layout, and Fig. 5 shows the juncture between the PC boards and the custom heatsink close up. Use 16 gauge or heavier wire for the leads to J1-J4. and twisted pairs to R13-R14 and R15-R16. If you're including the 5-volt supply, install BR3, C10, C11, and IC3 with the secondary heatsink using point-to-point wiring. Connect Tl , wire the primaries, and mount the primary heatsink and front panel. You should now be ready to turn on the supply

\section*{Checkout}

Install F1 and F2, apply power, and check for +60 volts \(D C\) across Cl and C2. Check for a bias supply of -25 volts DC across C3. Vary R15 and R16, and observe the output voltage change. When the current limiter is fully counterclockwise, the output voltage may be zero, regardless of adjustments. When current limiting occurs, LEDI should glow.

R-E


MAIL TO: Electronic Technology Today, Inc P.O. Box 240

Massapequa Park, NY 11762-0240

\section*{SHIPPING CHARGES IN USA AND CANADA}
\(\$ 0.01\) to \(\$ 5.00 \ldots \$ 1.25 \$ 30.01\) to \(\$ 40.00 \$ 5.00\) \(\$ 5.01\) to \(10.00 \ldots \$ 2.00 \quad \$ 40.01\) to \(\$ 50.00 \$ 6.00\) \(\$ 10.01\) to \(\$ 20.00 \$ 3.00 \quad \$ 50.01\) and above \(\$ 7.50\). \(\$ 20.01\) to \(\$ 30.00 \$ 4.00\)
SORRY, No orders accepted outside of USA and Canada

Total price of merchandise Shipping (see chart) Subtotal
Sales Tax (NYS only) Total Enclosed \(\qquad\)
Name
Address
City
ity
State

DIGITAL VIDEO STABILIZER ELIMINATES ALL VIDEO COPY PROTECTIONS


While watching rental movies, you will notice annoying periodic color darkening, color shift, unwanted lines, flashing or agged edges. This is caused by the copy protection jamming signals em. bedded in the video lape, such as Macrovision copy protection. Digital Video Stabilizer: RXII completely eliminates a!l copy protections and jamming signals and brings you crystal clear pictures.

FEATURES:
- Easy to use and a snap
to install
- State-of-the-art integrated circuit technol-
- 100\% automatic - no need for any
troublesome adjust. ments
- Compatible to all types of VCRs and TVs
- The best and most exciting Video Stabilizer in the market
- Light weight (8 ounces) and Compact ( \(1 \times 3.5 \times 5\) ) - Beautiful deluxe gift box - Uses a standard 9 Volt battery which will last 1 2 years.

WARNING : SCO Electronics and RXII dealers do not encourage people to use the Digital Video Stabilizer to duplicate renta movies or copyrighted video tapes. RXII is intended to stabilize and restore crystal clear picture quality for private home use only.
(Dealers Welcome)

ToOrder: \(\$ 49.95\) ea \(+\$ 4\) for FAST UPS SHIPPING 1-800-445-9285 or 516-694-1240 Visa, M/C, COD M-F: 9-6 (battery not included) SCO ELECTRONICS INC.
Dept.CAE 581 W. Merrick Rd. Valley Stream NY 11580 Unconditional 30 days Money Back Guarantee
CIRCLE 97 ON FREE INFORMATION CARD

\section*{CABLE TV DESCRAMBLER}



\section*{We Beat Anyone's Price! \\ 30 Days Money Back Quaranty Free Catalog}

Visa, M/C, COD or send money order to:
US Cable TV Inc. Dept. KA1 4100 N.Powerline Rd., Suite F-4
Pompano Beach, Fl 33073

\section*{1-800-445-9285}

Please have make and model number of the equipment used in your area ready. No Florida Sales!
It's not the intent of US Cable TV Inc. to defraud any pay TV operator and we will not assist any company or individual in doing so.

NETES:
THIS BOARD USES TWO 27512 PROMS ETT SEGMENTS DXXXX AND EXXXX FOR 128 K ORIVE ON XT TYPE MACHINES. SOME AT MACHINES MAY ALLOW ONLY 64 K TO BE USED.


FIG. 1
ing for the "signature" word 55 AAh every 2 K . If the scan routine finds the signature, it picks up the third byte, which specifies the number of 512 -byte blocks contained in the routine. The maximum value of the size byte is FBh (251), allowing a total of just under \(128 \mathrm{~K}(251 \times 512)\) bytes. The scan routine next computes a checksum over the specified number of blocks. If the checksum equals zero, the BIOS then executes a far call to the fourth byte, which is where user code should start. The user code should perform its initialization and then terminate with a far return, which will allow the scan routine to continue at the next available block.

There's nothing magic or even particularly obscure about that procedure; IBM has used it at least since the introduction of the XT, whose hard-disk controller contains a BIOS extension allowing orderly access to one or two hard disks. The same technique is used by EGA and VGA video cards, network adapters, even some "intelligent" floppydisk controllers, and more.

What Annabooks did was to tap into that potential by creating a set of programs that link user code into the floppy-disk drive control system of the PC-so that whenever a program tries to access an emulated drive, contents come from an EPROM rather than a physical drive. In addition, with the proper supporting hardware, static RAM's can be used to provide a fully solid-state read/write capability, and it all happens transparently at the DOS level. PROMKIT also supports multiple-drive emulation.

You use the software by creating a floppy disk with an exact image of the disk you wish to emulate. Make sure that you use a fresh floppy with no formatting errors, otherwise parts of your ROM image may be marked as "bad sectors." (I found that out the hard way.)

For example, format a disk (putting the system on it), copy the desired CONFIG.SYS and AUTOEXEC.BAT files to it, and then copy your application program(s). Then run the PROMKIT program (PK.EXE), specifying the drive letters of the source and
emulated drives, the name(s) of the file(s) that will receive the object code, number and type of EPROMs, etc. PK then builds a set of files containing both the ROM-scan loader that copies your files from ROM to RAM, and your application program. The number of files that PK creates, as well as their size. depends on the number and size of EPROM you use. The file format is a straight binary image: some EPROM programmers require a hex/ASCII format. So, Annabooks includes a utility that converts the binary file to Intel format.

How you address the burned EPROM's depends on your application. Older XT clones, for example, often have several unused sockets allowing 56 K of add-on ROM. Some AT system boards have a pair of sockets addressed at E000:0000. Otherwise, in a regular PC environment you'll have to use an add-on memory card. In addition, there are PC-on-a-card solutions, including Intel's Wildcard and others, that would allow more compact solutions.

For purposes of testing, Annabooks was kind enough to loan me the Universal Memory Card (UMC) card made by Sealevel Systems. The half-length card contains eight 28 -pin sockets that allow various combinations of EPROM's and static RAM's. and even includes provision for a lithium backup battery. The board can be addressed at any 256 K boundary in the PCs address space; I used it at the C000:0000 bound. You have to set several jumpers to select device type and capacity, and the documentation is minimal. To figure out the necessary decoding for my tests. I spent some time playing with different jumper settings, writing test programs to access different areas of memory, and watching the results on a scope.

Eventually I figured out the decoding, built a test floppy, burned three 32 K EPROM's, and installed them on the UMC. My first few attempts were disastrous because I didn't have the decoding jumpers set right, and then I
didn't understand which sockets on the board to use. I also found that a clean floppy is necessary.

\section*{Hardware options}

The PROMKIT documentation comes with several hardware designs for addressing various types of memory. One simple design (shown in Fig. 1) uses a single bus buffer and a PAL, and allows you to address two 27512 (64K) EPROM's in the D000 and E000 segments. Another twochip (plus memory) design allows you to emulate a full 360 K drive using only a 64 K data window occupied by a standard 27128 (16K) EPROM for the driver module, and three 27011 paged EPROM's for data. The latter are organized as \(16 \mathrm{~K} \times 8\) bits \(\times 8\) pages, for a total of 128 K each. The 27011's are somewhat expensive and hard to find, however. Another two-chip design allows read/write access to an emulated drive; another gives you 1 MB of emulated disk using only a 32 K window. The company also has information on commercial units like the Sealevel board I used.

The PROMKIT works with the companys BIOSKIT, so that you can combine the BIOS and the driver code in a single EPROM. The PROMKIT also comes with full source code (in C), heavily commented and well structured, so you can customize operation to your heart's content.
The PROMKIT is built on a foundation called the OBJEX Core Library, which provides a set of low-level data structures and routines (mostly in C, some in assembler, source included). You use OBJEX to access memory and I/O ports, manipulate 80xxx family segment registers, etc. PROMKIT is built on OBJEX; and Annabooks plans to release other system tools, including a "mini-DOS" that could be useful in situations where a full licensed copy of MS-DOS would be undesirable or cost-prohibitive. (Digital Research's DR-DOS is also available for ROM-based applications, and Microsoft recently responded to DR's growing popularity with an announcement of some support for a ROMbased DOS.) CD


\section*{C and Pascal programming}

0bect-oriented programming (OOP) may be just another fad, but it may not be. The first wide-scale implementation was on the Macintosh; now the PC world has caught up, so Microsoft and Borland are engaged in a war to define and control the market. The latest version (5.5) of Turbo Pascal adds object-oriented extensions. If you don't know what OOP is, Turbo Pascal 5.5 contains an excellent little book introducing the subject. If you feel the need for more handson experience, check out the Turbo Pascal DiskTutor by Werner Feibel. That book/disk combination consists of two parts. The first nine chapters teach you the basics of programming in Pascal and in using the tutorial environment. Chapter ten deals with

\section*{ITEMS DISCUSSED}
- PromKit (\$179), Annabooks. Suite 250-262, 12145 Alta Carmel Court, San Diego. CA 92128. (619) 271-9526.
circle 40 on free information card
- Universal Memory Card (\$199). Sealevel Systems, Inc., P.O. Box 1808, Easley. SC 29641. (803) 855-1581.

CIRCLE 41 ON FREE INFORMATION CARD
Turbo Pascal DiskTutor (\$39.95), Werner Feibel, Borland-Osborne/McGraw-Hill, 2600 Tenth Street. Berkeley, CA 94710.

CIRCLE 42 ON FREE INFORMATION CARD
Microsoft C, Secrets, Shortcuts, and Solutions (\$24.95), Kris Jamsa, Microsoft Press, Microsoft Corp., 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. (206) 882-8080. CIRCLE 43 ON FREE INFORMATION CARD
units (libraries of object code), and serves as a bridge to the next two chapters, which deal with OOP. The final chapter deals with bit manipulation and using DOS services.

If C is more to your taste, check out Microsoft C, Secrets, Shortcuts, and Solutions by Kris Jamsa. It's a tutorial starting at square one. No compiler is included, and the examples are all geared toward Microsoft C. The book consists of four parts; the first discusses basics of the language and the Microsoft environment. Part II goes into pointers. arrays. and file processing. Part III continues with command-line processing, accessing the DOS environment, I/O redirection, low-level file I/O, and dynamic memory allocation. Part IV discusses optimizing compiler usage. LIB and MAKE, memory models, critical error handling, and other advanced topics. I do wish that I could take a couple of months off and study the book in depth. \(\mathbf{C D}\)

\section*{Try the}

bulletin board system (RE-BBS)
\(516-293-2283\)

The more you use it the more useful it becomes.

We support 300 and 1200 baud
operation.
Parameters: 8N1 ( 8 data bits, no parity, 1 stop bit) or \(7 E 1\) ( 7 data bits, even parity, 1 stop bit).

Add yourself to our user files to increase your access.

Communicate with other R-E readers.

Leave your comments on R-E with the SYSOP.

RE-BBS
516-293-2283
\begin{tabular}{|c|}
\hline KEYLESS ENTRY \\
\hline continued from page 71 \\
\hline
\end{tabular}
of which consists of three digits. You change the entry codes from the keypad by entering a special three-digit "function" code, discussed in detail later. An LED indicates system status.

It should be noted that the digital keyless entry system is not a complete security system in and of itself; however, it can function as an integral component of a complete security system.

\section*{Circuit description}

The heart of the system is the Motorola MC68705P3 microcontroller discussed in detail in the September 1989 Radio-Electronics (page 82). To summarize its features, the microcontroller has 64 bytes of RAM, 2 K of EPROM, a built-in clock oscillator, and 20 I/O ports.
You can program the 68705 with some off-the-shelf EPROM programmers; you may also want to consider building the programmer described in the earlier article.


Fig. 2. THE KEYPAD consists offour rows by three columns. Pressing a key grounds the intersection of the corresponding row and column.

The keypad used in this design is a standard four-row by threecolumn keypad with a common ground, as shown in Fig. 2. Each of the seven keypad outputs is pulled up by a resistor (R1-R7) and is connected to ports A0-A6 of the microcontroller, as shown in Fig. 3. The microcontroller uses a software scanning routine to determine when a key is pressed.
When the microcontroller has recognized a valid entry code, it sends port PBO high, which turns on power MOSFET Q1, which in turn enables relay RY1. Current for the door latch then flows through the relay contacts. Diode D1 is wired across the coil of the relay to prevent voltage spikes caused by the instantaneous change in current through the relay coil.

Port B7 of the microcontroller drives LED 1 (status) directly. A logic low on port B7 completes the circuit to ground and lights the LED.

When the extal and xtal inputs ( Dins 4 and 5) are connected to-


Fig. 3. COMPLETE SCHEMATIC of the digital keyless entry system. You can eliminaie diode D4-D7 if you don't want battery backup. However, you'll be limited to the access codes burned into the microcontrollers EPROM.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Parts List} \\
\hline \multicolumn{2}{|l|}{} \\
\hline \multicolumn{2}{|l|}{All resistors are \(1 / 4\)-watt. 5\%. unless otherwise noted.} \\
\hline R1-R7 & .....33.000 ohms \\
\hline R8 & . 470 ohms \\
\hline & 20.000 ohms \\
\hline Capacito & \\
\hline & \(\ldots 1 \mu F .10\) volts. electrolytic \\
\hline & . \(.100 \mu f .10\) volts. electrolytic \\
\hline C3 & ...0.1 \(\mu\) F. ceramic \\
\hline Semicondu & \\
\hline & .....MC68705P3 microcontroller \\
\hline & ..7805. 5-volt DC regulator \\
\hline & ....IRF511. power MOSFET \\
\hline LED1 & ... standard red \\
\hline D2-D7 & \[
\begin{array}{r}
\text {.....IN4001. } 100 \\
\text { volts. } 1 \mathrm{amp}
\end{array}
\] \\
\hline \multicolumn{2}{|l|}{Miscellaneous} \\
\hline \multicolumn{2}{|l|}{Keypad ...................common ground} \\
\hline \multicolumn{2}{|l|}{Door latch ......................... (see text)} \\
\hline Relay & SPST. 5-volt coil. 50 ohms. 100 mA \\
\hline Fuse & \(1 / 2\) amp (and holder) \\
\hline Transformer & 9-voll DC. wallmount \\
\hline Batteries & .. 4 AA cells (and holder) \\
\hline
\end{tabular}

Ordering Information
The following are available from
Simple Design Implementations
(SDI)
P.O. Box 9303

Forestville, CT. 06010

\section*{Preprogrammed \& tested MC68705 \$25 + \$2.50 S/H}

Electromechanical door Latch \(\$ 45+\$ 4 \mathrm{~S} / \mathrm{H}\) )

\section*{Complete kit of parts as shown in} Parts List
(\$75+\$6 S/H)
Software on 5.25" disk ... \$25 + \$3 S/H)
gether as shown in Fig. 3, the microcontroller's internal oscillator circuit runs at about 800 kHz , providing a cycle time of
about \(1.25 \mu \mathrm{~s}\). The accuracy of a crystal oscillator is not important for this project.

The microcontroller pulls up the \(\overline{\text { RESET }}\) input (pin 28), thereby eliminating the need for an external resistor. The \(1-\mu \mathrm{F}\) capacitor (C1) connected from that pin to ground gives the power supply time to stabilize before allowing the microcontroller to start up.
The external-interrupt input (INT, pin 2) is tied high because interrupts are not required for this project. \(\mathrm{V}_{\mathrm{PP}}(\) pin 6 ) is also tied high per the manufacturers specifications.

\section*{Power considerations}

The power supply bears some explanation; it provides an optional battery-backup system. If you want, you can hard-code the desired entry codes into EPROM. That way, you won't need to provide battery backup. But you won't be able to change codes without changing the contents of the EPROM.

The 7805 voltage regulator (IC2) maintains the supply at five volts. and filter-capacitor C2 removes any noise from the DC supply voltage. A reversed-polarity protection diode (D3) is included to protect against misapplication of power. Diode D4 serves to "lift" the 7805s output voltage by about 0.7 volts to provide an output of 5.7 volts, which is then dropped by D5 back to 5.0 volts. Diodes D5, D6, and D7 isolate the battery and the power supply from one another, preventing current from flowing from whichever source happens to be active into the other. The batteries supply about \(6.0-0.7-0.7=4.6\) volts. Four AA batteries supply plenty of power to keep the micro-


Fig. 4. AN UNGROUNDED KEYPAD may be used. but youll have to change the keypad scan routine. An excellent opportunity to get started in 68705 programming!
controller's memory active (and your entry codes intact), but they can't operate the door latch, so in case of a power failure, you will have to use a key to open the door.

If the system encountered a battery failure and a main power failure simultaneously, the microcontroller's memory would be lost. When power was restored, the entry codes would be initialized to the default values stored in EPROM. Diodes D4-D7 may be removed if the batterybackup option is not used.

\section*{Software design}

The following describes the software running on the microcontroller; with the information provided, it should be easy to customize operation to your liking. Complete source and object code have been posted on the REBBS (516-293-2283, 300/1200 baud, 8 N1) in the file DIGKEY.EXE, a self-extracting compressed file. The compressed file consists of about 20 K ; run it on a disk with at least 50 K of free disk space.


Fig. 5. MOUNTING DIMENSIONS for the prototype door latch. This is only a guide: measure your own unit carefully.

Rates: Ads are \(21 / 4^{\prime \prime} \times 2^{7 / 8^{\prime \prime}}\). One insertion \(\$ 950\). Six insertions \(\$ 925\).each. Twelve insertions \(\$ 895\). each. Closing date same as regular rate card. Send order with remittance to Computer Admart, Radio Electronics Magazine, \(500-\mathrm{B}\) Bi-County Blvd., Farmingdale, NY 11735. Direct telephone inquiries to Arline Fishman, area code-5i6-293-3000. Only 100\% Computer ads are accepted for this Admart.


CIRCLE 61 ON FREE INFORMATION CARD

\title{
SECRETS OF THE COMMODORE 64
}

BP135-A beginners guide to the Commodore 64 presents masses of useful data and programming tips, as well as describing how to get the best from the powerful sound and graph-
 ics facilities. We look at how the memory is organized, random numbers and ways of generating them, graphics-color-and simple animation, and even a chapter on machine code. Get your copy today. Send \(\$ 5.00\) plus \(\$ 1.25\) for shipping in the U.S. to Electronic Techology Today Inc., P. O. Box 240, Massapequa Park, NY 11762-0240.

\title{
GETTING THE MOST FROM YOUR PRINTER
}


BP181-It is probable that \(80 \%\) of dot-matrix printer users only ever use \(20 \%\) of the features offered by their printers. This book will help you unlock the special features and capabilities that you probably don't even know exist. Tu order your copy send \(\$ 6.95\) plus \(\mathbf{\$ 1 . 5 0}\) for shipping in the U.S. to Electronic Technology Today Inc., P.0. Box 240, Massapequa Park, NY 11762-0240.

The system can recognize as many as three distinct entry codes. Each entry code is three digits long. The three entry codes can be independently changed and independently enabled or disabled. The system also recognizes a fourth three-digit code that puts the system into the "function" mode mentioned earlier: the function mode allows the user to change the entry codes or enable/disable the entry codes.
The three entry codes and their functional status are initialized on power up to default values stored in the EPROM. The function code, on the other hand, always starts up enabled, because if it started up disabled, the user would never be able to get into the function mode to enable it!

During normal operation, the LED flashes to indicate that the microcontroller is active and ready for input. The microcontroller stores the incoming keypad data in a buffer and constantly compares that buffer to the three valid entry codes. If a match is found, the microcontroller checks to see if that particular entry code is enabled. If the entry code is enabled, the electromechanical latch is energized for seven seconds.

If the microcontroller detects too many digits before a valid match is detected, the system en-
ters a security mode prohibiting further input until the "*" key is pressed. While in security mode, the LED stops flashing. and remains off, indicating an improper access attempt.
The microcontroller purges the input buffer three seconds after the last key was pressed. Therefore, if the user enters one. two, or three incorrect digits, he must wait at least three seconds from the last entry before reentering the correct code. If the user does not wait three seconds, the incorrect digits remain in the buffer, a correct match cannot be made, and the system will enter security mode on the fourth digit.
The microcontroller enters the function mode when the correct three-digit function code is entered. Upon entering the function mode, the LED will turn on for 1.5 seconds, turn off for 1.5 seconds, and then remain on. The microcontroller will now accept an entry-code change. The user enters the number of the entry code he wishes to change ( 1 , 2 , or 3 ) followed by the three new digits, followed by a zero (0) if the code is to be enabled or a one (1) if the code is to entered but not yet enabled. If an entry code already contains the desired three digits and the user simply wishes to activate or deactivate the code, then he must hit "*" (deactivate) or "\#"
(activate), following the function code and the entry code number. The user is not required to enter the three digits of the entry code when enabling or disabling it.

\section*{Construction/installation}

The prototype was built on a small piece of perfboard using point-to-point techniques. Be sure to observe the polarity of all polarized ports.

You could use a standard row/ column connect type of keyboard: doing so would allow you to eliminate four of the seven keypad pullup resistors. Figure 4 shows the basic idea. However, you'd have to implement a different keyboard scan routine.

The only change to the existing lock assembly involves removing the latch receptacle in the door jamb and replacing it with the electromechanical latch.

The latch in the prototype was obtained at a local safe and lock store. Although the physical dimensions of the latches were fairly uniform (as shown in Fig. 5), drive potential varied from three to twenty-eight volts, either AC or DC. The author recommends driving the latch with an AC voltage because the latch will buzz when energized: DC drive voltages work just as well, but the latch will make only one faint click when energized.

\title{
Audio
}

\title{
UPDATE
}

\section*{National sound preference?}

IONG-TERM READERS OF THIS COLUMN may have noticed that I've been less than kind to those audiophiles who harbor strange, semi-magical beliefs about sound quality and the "mysterious" factors that supposedly influence it. It's not generally appreciated that many of the strange audio attitudes and peculiar belief systems originated in the same place that most of the equipment comes from-Japan.

I can remember my first encounter with Japanese audiophilia, about 15 years ago. A number of Japanese audio-magazine editors were visiting the U.S. and wanted to meet with me and other American audio editors to "exchange views." I was certainly pleased at the opportunity to meet my Japanese counterparts and looked forward to discussing technology, the audio-magazine business, the comparative natures of Japanese and American hi-fi audiences, and so forth. After a tour of the Stereo Review offices and sound room, we proceeded to a large local restaurant. As I recall, the first question put to me (during an excellent minestrone soup) was whether I preferred speakers with "East-Coast" or "West-Coast" sound.

I seems that the Japanese had observed that the leading U.S. west-coast speaker manufacturers of the time-Altec Lansing and JBL-produced high-efficiency systems with overly strong middle and upper midrange response, sometimes accompanied by a heavy upper bass. (Altec and JBL systems no longer sound that way.) On the other hand (or coast),
there were the New England man-ufacturers-Acoustic Research (AR), KLH, and several otherswhose acoustic-suspension systems had a smooth and extended frequency response that was relatively free of peaks and dips. (Incidentally, at that time AR systems accounted for fully one-third of U.S. speaker sales, a feat that has never been equaled.)

\section*{Bi-coastal disclaimer}

I tried to explain that I did not find it helpful to characterize speakers by their area of origin, since I had heard system s from opposite sides of the country with similar sound qualities and systems manufactured on the same coast that sounded different. But my Japanese friends were not content with what they obviously thought was a cop-out. "What kind of sound do the Harman Kardon speakers have?" they persisted. "Long Island sound," I quipped, hoping to end the discussion. (For those readers unfamiliar with New York geography, the Long Island Sound separates Long Island, where Harmon Kardon is located, from Connecticut.) My reply had no effect on the Japanese, but caused one of the U.S. editors to choke on his soup.

In any case, our discussion ultimately turned to other matters, and I learned that their concern about East-Coast/West-Coast sound had world-wide implications. It seems that my Japanese colleagues believed that there were national tastes in sound: The Germans liked one kind of tonal balance, the English another, the

Japanese a third, and so forth. Subsequently, I even saw a manufacturer's newsletter that attempted to correlate national speaker tastes with local environmental factors, such as high or low humidity levels.

On my subsequent trips to Japan, most of the engineers that I spoke to simply accepted the variations in national tastes as a given, and were prepared to export to each country the kind of sound that they believed its natives preferred. Incidentally, the speakers that came to the U.S. were of the "West-Coast" variety, because that was also the kind of sound that the lapanese liked. As a result, for many years no Japanese speaker ever received a good review in the American or British press, even from those publications that loved Japanese electronics.

\section*{Insrutable ears}

Here's where the story really gets confusing and mysterious. One of the American representatives (let's call him Bill) of a major Japanese manufacturer asked me to have Stereo Review test a new two-way bookshelf speaker system. He assured me that it was a cut above the typical Japanese speaker. I agreed to submit it to our test lab, which, to my surprise, gave it a very favorable review. A month or so after the test report appeared in print, I got a call from Bill, who asked if I would be willing to visit his company's Long Island City plant and do a little critical listening for him. He suggested that I bring my own test continued on page 87

\section*{HARDWARE HACKER}
continued from page 68
a laser-printed image onto T-shirts, for rubber stamps, and for CAD/ CAM machining of a plastic mockup or even actual hardware. (11) A super scungy vacuum packer and/or shrink wrapper.
(12) A method to convert an orbital jitter sander into a paper jogger.
(13) A new combination scoring, perforating, and die-cutting machine, possibly with a hot foil diestamping capability, as well.
(14) A very low-cost power stapler strong enough to handle Jiffy Bags.
(15) Solutions to economical custom glass etching.
(16) Vinyl hot-knife sign cutters and PostScript driven wood and/or aluminum routers.

Once again, your projected final cost to the end user on any and all of those should end up in the \(\$ 25\) to \(\$ 99\) range, or under one-tenth of the sales commissions of the "real" print machinery that all this stuff is inevitably going to shoot out of the saddle.

Your hacker abilities are obviously needed to hold the costs down. And lots of electronics and power control does seem to be involved. This is one hot topic right now, with a potential market in the millions of units.

\section*{Two contests}

Let us have two contests for this month. As usual, there will be an Incredible Secret Money Machine for the dozen or so best entries, with an all-expense-paid (FOB Thatcher, AZ) tinaja quest for two awarded to the very best of all.

Either (A) show to me a new and unique hacker circuit involving the NE5520N with some unusual synchronous demodulation use, or else (B) show me a low-cost solution to some desktop publishing peripheral hardware of one sort or another.

As usual, send your entries directly to me at Synergetics, and not to Radio-Electronics. Let's hear from you.

\section*{New tech literature}

Those Phillips folks have re-
cently bought out Amperex and several other companies. They've now released a wheelbarrow full of fat, new, and free data books. Check out their Light Emitting Diode; RF Power Transistor; HighVoltage Transistor; RF Power Module; Thyristor; Small Signal Transistor; Surface Mounted Semiconductor; and the PowerMOS data books for openers. There's bunches more where those came from. Linear Technology has issued a great new 1990 Linear Data Book that is crammed full of great hacker integrated circuits.

Free software this month includes the latest Specs in Secs Discrete Data from Motorola, and the \(P C B / I\) printed circuit layout demo from OrCAD. And unusual free samples for this month include the MC33034 Brushless Motor Controller, again from Motorola, the Advanced Bus Interface Product Samples from Texas Instruments, and the various low-cost jellybean integrated circuits from Calogic.

Our reminder here that Midnight Engineering is a great new hacker magazine aimed at all small-scale hardware and software productions. Free samples are available.

Rounding out the selections, the Chomerics folks have new Cho-Flex 440-X line of force-sensitive inks. Car Audio is an interesting slick magazine for highpower mobile music buffs. American Design Components has a new surplus catalog that includes \(\$ 14\) ultrasonic radars and \(\$ 15\) gyroscopes, among scads of other goodies. And Chips and Technologies has a new 82C235 single-chip AT motherboard out, along with a free data book.

Turning to my own stuff, for the fundamentals of digital integrated circuits, check out my million-selling TTL and CMOS Cookbooks. I also have a new and free mailer for you which includes dozens of insider and top hardware-hacking secret sources. Do write or call for your copy.

As always, this is your column and you can get technical help and off-the-wall networking per that Need Help? box. The best calling times are weekdays 8-5, Mountain Standard Time. Let's hear from you. R-E

SHORT CIRCUITS


\title{
MARKET CENTER
}

\section*{FOR SALE}

PHOTOFACT folders, under \#1400 \$4.00. Others \(\$ 6.00\). Postpaid LOEB, 414 Chestnut Lane, East Meadow, NY 11554.
GREAT buys! Surplus prices, ICs, linears, transtormers, PS, stepping motors, vacuum pump, phototransistor, meters, LSASE, FERTIK'S, 5400 Ella, Phila., PA 19120.
DESCRAMBLERS. All brands. Special: Combo Jerrold 400 and SB3 \(\$ 165\). Complete cable descrambler kit \(\$ 39\). Complete satellite descrambler kit \(\$ 45\). Free catalog. MJM INDUSTRY, Box 531, Bronx, NY 10461-0531.
T.V. notch filters, surveillance equipment, brochure \(\$ 1.00\) D.K. VIDEO, Box 63/6025, Margate, FL 33063. (305) 752-9202.

\section*{CB RADIO OWHEERS!}

We specialize in a wide variety ot technical information, parts and services for CB radios. 10-Meter and FM conversion kits, repair books, plans, high-performance accessories. Thousands of satistied customer since 1976! Catalog \(\$ 2\).

\section*{CECTNTERINATIONAL}
P.O.BOX 31500RE, PHOENIX, AZ 85046

LASER Listener II, other projects. Surveillance descrambling, false identification, information Plans, kits, other strange stuff. Informational package \(\$ 3.00\) refundable. DIRIJO/BOND ELEC TRONICS, Box 212, Lowell, NC 28098.
ENGINEERING software, PC/MSDOS. Hobbyists - students - engineers. Circuit design \(\$ 59.00\), FFT analysis \(\$ 69.00\), Mathematics \(\$ 49.00\), Logic Simulation \(\$ 49.00\) Circuit Analysis \(\$ 29.00\). Free catalog, (614) 491-0832, BSOFT SOFTWARE, 444 Colton Rd., Columbus, OH 43207.
RESTRICTED technical information: Electronic surveillance, schematics, locksmithing, covert sci ences, hacking, etc. Huge selection. Free brochures. MENTOR-Z, Drawer 1549, Asbury Park, NJ 07712.

CABLE TV DESCRAMBLERS!

- JERROLD -TOCOM - HAMUN - SCIENTIFIC ATLANTA - ZENTH Oak M35B ONLY \(\$ 60\)
6 month warranty! We ship C.O.D.I Lowest retail/wholesaie prices! FREE CATALOG: Global Cable Network 1032 rving St. Suite 109 S.F., CA 94122 ORDER TODAY! 800-327-8544

CABLE TV converters: Jerrold, Oak, Scientific Atlantic, Zenith \& many others. "New MTS" stereo add-on: mute \& volume. Ideal for 400 and 450 owners! 1 (800) 826-7623. Amex, Visa, M/C accepted. B \& B INC., 4030 Beau-D-Rue Drive, Eagan, MN 55122.
DESCRAMBLER. 1990 specials, examples Tocom-w/r \(\$ 199.00\), Jerrold \(400-\mathrm{w} / \mathrm{r} \$ 125.00\), Z-Tacw/r \$225.00, SA-3 and Tri-modes \$89.00, all types in stock, COD OK. MOUNT HOOD ELECTRONICS, (206) 896-6837.

TUBES : "oldest," "latest." Parts and schematics. SASE for lists. STEINMETZ, 7519 Maplewood Ave. RE, Hammond, IN 46324.

SURPLUS ELECTRONICS. New giant wholesale catalog. Hundreds of amazing bargains. \$2. Box 840, Champlain, NY 12919.

\section*{CLASSIFIED AD ORDER FORM}

To run your own classified ad, put one word on each of the lines below and send this form along with your check to:
Radio-Electronics Classified Ads, 500-B Bi-County Boulevard, Farmingdale, NY 11735
PLEASE INDICATE in which category of classified advertising you wish your ad to appear. For special headings, there is a surcharge of \(\$ 25.00\).
( ) Plans/Kits ( ) Business Opportunities
) Education/Instruction () Wanted ( ) For Sale
()

\section*{Special Category: \(\$ 25.00\)}

PLEASE PRINT EACH WORD SEPARATELY, IN BLOCK LETTERS.
(No refunds or credits for typesetting errors can be made unless you clearly print or type your copy.) Rates indicated are for standard style classified ads only. See below for additional charges for special ads. Minimum: 15 words.
\begin{tabular}{|c|c|c|c|c|}
\hline 1 & 2 & 3 & 4 & 5 \\
\hline 6 & 7 & 8 & 9 & 10 \\
\hline 11 & 12 & 13 & 14 & 15 (\$46.50) \\
\hline 16 (\$49.60) & 17 (\$52.70) & 18 (\$55.80) & 19 (\$58.90) & 20 (\$62.00) \\
\hline 21 (\$65.10) & 22 (\$68.20) & 23 (\$71.30) & 24 (\$74.40) & 25 (\$77.50) \\
\hline 26 (\$80.60) & 27 (\$83.70) & 28 (\$86.80) & 29 (\$89.90) & 30 (\$93.00) \\
\hline 31 (\$96.10) & 32 (\$99.20) & 33 (\$102.30) & 34 (\$105.40) & 35 (\$108.50) \\
\hline
\end{tabular}

We accept MasterCard and Visa for payment of orders. If you wish to use your credit card to pay for your ad fill in the following additional information (Sorry, no telephone orders can be accepted.):

Card Number
Expiration Date


IF YOU USE A BOX NUMBER YOU MUST INCLUDE YOUR PERMANENT ADDRESS AND PHONE NUMEER FOR OUR FILES. ADS SUBMITTED WITHOUT THIS INFORMATION WILL NOT BE ACCEPTED. CLASSIFIED COMMERCIAL RATE: (for firms or individuals offering commercial products or services) \(\$ 3.10\) per word prepaid (no charge for zip code) MINIMUM 15 WORDS. \(5 \%\) discount for same ad in 6 issues; \(10 \%\) discount for same ad in 12 issues within one year; if prepaid. NON-COMMERCIAL RATE: (for individuals who want to buy or sell a personal item) \(\$ 2.50\) per word, prepaid....no minimum. ONLY FIRST WOIID AND NAME set in bold caps at no extra charge. Additional bold face (not available as all caps) 55 c per word additional. Entire ad in boldface, \(\$ 3.70\) per word. TINT SCREEN BEHIND ENTIRE AD: \(\$ 3.85\) per word. TINT SCREEN BEHIND ENTIRE AD PLUS ALL BOLD FACE AD: \(\$ 4.50\) per word. EXPANDED TYPE AD: \(\$ 4.70\) per word prepaid. Entire ad in boldface, \(\$ 5.60\) per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD: \(\$ 5.90\) per word. TINT SCREEN BEHIND ENTIRE EXPANDED TYPE AD PLUS ALL BOLD FACE AD: \(\$ 6.80\) per word. DISPLAY ADS: \(1^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 385.00 ; 2^{\prime \prime} \times 21 / 4^{\prime \prime}-\$ 770.00 ; 3^{\prime \prime}\) \(21 / 4^{\prime \prime}-\$ 1155.00\). General Information: Frequency rates and prepayment discounts are available. ALL COPY SUBJECT TO PUBLISHERS APPROVAL. ADVERTISEMENTS USING P.O. BOX ADDRESS WILL NOT BE ACCEPTED UNTIL ADVERTISER SUPPLIES PUBLISHER WITH PERMANENT ADDRESS AND PHONE NUMBER. Copy to be in our hands on the 10th of the third month preceding the date of the issue. (i.e., Aug. issue copy must be received by May 10th). When normal closing date falls on Saturday, Sunday or Holiday, issue closes on preceding working day. Send for the classified brochure. Circle Number 49 on the Free Information Card.


\section*{THE ULTIMATE ELECTRONICS CATALOG}

Order your 260 page catalog and price list with over 14,000 money saving electronic parts and equipment! Send \(\$ 3.00\) in a check or money order, or call 1-800-543-3568 today and use your Mastercard or Visa. Consolidated Electronics, Incorporated 705 Watervliet Ave., Dayton, Ohio 45420-2599

Name
Address
City

CIRCLE 70 ON FREE INFORMATION CARD

\section*{FREE CATALOG}
famous "FIRESTIK" bRAND CB ANTENNAS AND ACCESSORIES. QUALITY PRODUCTS FOR THE SERIOUS CB'er. SINCE 1962
FIRESTIK ANTENNA COMPANY 2614 EAST ADAMS PHOENIX, ARZONA 85034

FEB 87 Triparts \(\$ 59.00\). Feb 84 SB parts \(\$ 49.00\). \(\$ 3.50\) shipping. OCTE, Box 276, Alburg, VT 05440 (514) 739-9328.

MINIATURE electronics like James Bond. Catalog \(\$ 3.00\), refundabie. F \& P ENTERPRISES, Box 51272, Palo Alto, CA 94303-L
TUBES, new, up to \(90 \%\) off, SASE, KIRBY, 298 West Carmel Drive, Carmel, IN 46032.
TOCOM 5503 V.I.P. descrambler "Turnon" module "All channels," formats. Simple hookup. "Free schematic." \$39.00. MIKE, Box 743, Oldsmar, FL 34677.
CABLE TV converters and descramblers. We sell only the best. Low prices. SB-3 \(\$ 79.00\). We ship C.O.D. Free catalog. ACE PRODUCTS, PO Box 582, Dept. E, Saco, ME 04072.1 (800) 234-0726.

SAMS closeout sale. \#2 to \#2600 \$6.00 each postpaid. MC Visa. Call 1 (800) 274-2081. 9-5 CST. MEMORY chips, Simms and Sipps: 4164-100 \(\$ 2.00,41256-100 \$ 2.55,41464-100 \$ 3.25\). Call ED/ DATAFIX, (201) 322-7666.
TUBES Sylvania 6LQ6, 6L6GC, 20LF6 etc. Huge discounts. ARLEN SUPPLY, 7409 West Chester Pike, Upper Darby, PA 19082. 1 (800) 458-1301.
FINALLY a digital technology course for everyone! Technicians, supervisors and managers! Free details. TEKNOWLEDGY SOURCES, RE003, Box 1284, League City, TX 77573.

\section*{CABLETV}

\section*{TB-3 (Tri-Bi) or SA-3}

\section*{Quantity Prices}

10
20


Each
50
100


Each


Each
Hours open 10:00 am to 4:00 pm Eastern time Minimum order 5 units 55.00 ea. Dealers wanted. We ship COD.

King Wholesale 1-800-729-0036
Fax number 6173400053
"No one beats the King's prices!"

\section*{Employers}

Willing workers available now at as little as \(1 / 2\) your usual cost.

This is your chance to get help you've needed, but thought you couldn't afford. No business too large or too small. Call your private industry council or urite National Alliance of Business, PO. Box 7207 Washington. D.C. 20044

DESCRAMBLERS, Jerrold, Hamlin, Tocom, SA, Zenith, Oak, all remote control. Examples - RTC-56 \(\$ 150.00,400-\) DIC \$125.00, S.A.C., (702) 647-3799 info. 1 (800) 622-3799 orders.

TJ SERVICES is here to serve you! Our quality products, quick courteous service, knowledgeable sales people and rock bottom prices prove it! Not sure what you need? Call (313) 979-8356 we'll help! We specialize in Jerrold, Hamlin, interferance filters and most SA equipment.

MULTI CHANNEL MICROWAVE ANTENNAS
- CRYSTAL CONTROLLED MICROWAVE ANTENNAS FOR OVER THE AIR CABLE SYSTEMS (WIRELESS CABLE)
- capable of receiving 30 Channels
- CONVERTERS AVAILABLE FOR ZENITH SYSTEMS CATALOG \& INFO: (203) 975-7543

\section*{YUDEO-LNK ENTERPRISES}

520 GLENBROOK RD., SUITE-202. STAMFORD CT 06906
CABLE TV descramblers M35B. Top quality. Tested, quaranteed, vari-sync available. Dealers wanted. \$39.00. 1 (800) 648-4600.

MAKE the most of your schematics. VCR/Camcorder cross-reference manual for RCA. Wards, Magnavox, Penneys, Sears, Panasonic, and many more. \(\$ 19.95\) plus \(\$ 2.50\) postage and handling. CROSSPULSE IMAGING, Box 73. Stanton, CA 90680.

8051 Cross-disassembler, PC/MSDOS, debug/reconstruct source code. Generates labels, Xref lists and ASCll equiv. \$79. Others avail. Write for details. DATA SYNC ENGINEERING, Box 288 - Dept. Q. Franklin, NJ 07416

DESCRAMBLERS. - For free catalog contact CABLE CONNECTION, 1304 E. Chicago Street, Suite 301, Algonquin, IL 60102. (708)658-2365.
MICROWAVE receiver TV commercial crystal controlled 230 B antenna and P.S included. After 1PM EST (718) 257-4472. \$175.00.

SINGERS! \({ }_{\text {world }}\) Sing With The World's Best Bands! The Thompson Vocal Eliminator records \(\varepsilon\) CD's! Unimited Supply of * Background Music! Easily Record or PPerform with the Backgrounds. Used connects easily to hou componen stereo. Manufactured and Sold Exclusively by LT Sound. For Free Brochure \(\mathcal{E}\) Demo Record, Call: LT Sound, Dept. RL-1, 7981 LT Parkway, Lifona,

FREE trial IBM-PC memory resident speller, like dictionary, \(\$ 29.00\). For trials, send \(\$ 2.00\) : SPELLRITE, PO box 30753, Tucson, AZ 85751.
CABLE TV, best SSAVI's, Tocom's and filters in the business. We build all our own equipment, no middleman. Upgrade your SSAVI to a super SSAVI with our PAL kit. Quantity and dealer pricing. We ship COD - call to get on our mailing list. 1 (800) 526-9063. COPA ELECTRONICS.
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{WUBOWME TV RECEIVERS 19 to 27 GHz} \\
\hline & \multicolumn{2}{|l|}{\begin{tabular}{l}
2 CH Compact Dish System - \(\$ 77.95\) \\
5 CH Dish System - 593.95 \\
12 CH Yagi (Rod) System - \(\$ 123.95\) \\
30 CH Dish System- \(\$ 163.90\) Yagi-S 183.90
\end{tabular}} \\
\hline & \begin{tabular}{l}
SUN MICROWAVE INT'L. INC \\
P. 0. BOX 34522 \\
PHOENIX. AZ 85067 \\
[602) 230-0640
\end{tabular} & NC. Send \(\$ 1^{100}\) for catalog on these and other line video products. \\
\hline VISA/MC/COD & QUANTITY OISCOUNTS LIE & IFETIME WARRANTY \\
\hline
\end{tabular}

RENTAL movie stabilizer. Connect between VCRs or to monitor. Satisfaction guaranteed. \$69.95, \(\$ 4.00\) handling. 1 (800) 367-7909.
TEST equipment pre-owned now at affordable prices. Signal generators from \(\$ 50.00\). Oscilloscopes from \(\$ 50.00\). Other equipment, including manuals available. Send for Catalog. J.B. ELECTRONICS, 3446 Dempster, Skokje, IL 60076. (312) 982-1973.

REMOTE CONTROL KEYCHAIN


Complete wfmini-transmitter and \(+5 \cdot v d c\) AF receiver Fully assembled including plans
to build your own auto alarm Quantily discounts avallable \(\$ 24.95\) Chack Visa or MOC VISITECT INC, Dept, R (415) 872-0128 PO BOX 5442, SO SAN FRAN.,CA 94080

\section*{PLANS AND KITS}

BUILD this five-digit panel meter and square-wave generator including an ohms, capacitance and frequency meter. Detailed instructions \(\$ 2.50\). BAGNALL ELECTRONICS, 179 May, Fairfield, CT 06430.

STEREO FM transmitter!. Transmit your VCR/CD/ Walkman to any FM stereo radio. One chip does it all! Free schematic and info. Send a self addressed/ stamped envelope to: DJ INC., 847A Second Ave., Suite 113, New York, NY 10017.
ELECTRONIC kits! Tracking transmitters! Voice disguisers! Bug detectors! Surveillance items! More! Catalog \$1.00: XANDI ELECTRONICS, Box 25647, 60B, Tempe, AZ 85285-5647.
RADIO Astronomy! Monthly magazine, books, components. \$3.00 brings sample package. BOB'S ELECTRONIC SERVICE, 7605 Deland, Ft. Pierce, FL 34951.


CATALOG: hobby/broadcasting/HAM/CB: Cable TV, transmitters, amplifiers, surveillance devices, computers, more! PANAXIS, Box 130-F3, Paradise, CA 95967.
FM transmitter 88 to 108 MHz kit \(\$ 12.95\); power supply 0 to 20 V 1 AMP kit \(\$ 79.99\); Flyback tester assembled \(\$ 95.99\); shipping and handling 4\% unit SASE for information. SIERRA ELECTRONICS, PO Box 709, Elfers, FL 34680-0709.
SURVEILLANCE equipment design gives 58 schematics of Sheffield Electronics surveillance devices. Circuits explained. Transmitters range from pens to one-mile VOX's including crystal, subcarrier, carrier current, infrared, firefly, automobile. Demodulators given. Cube tap and duplex mains powered transmitters presented. Eighteen telephone transmitters are leech and battery types including crystal and subcarrier. Countermeasures chapter. Much more. This \(81 / 2 \times 11\) inch 110 -page book is illustrated with photographs. Price \(\$ 30.00+\$ 4.00 \mathrm{~S} \& \mathrm{H}\). First class mail U.S. \& Canada. Overseas airmail S\&H \(\$ 9.00\). One-day processing, pay with money order or cashier's check. Send to: WINSTON ARRINGTON, 7223 Stony Island Ave., Chicago, IL 60649-2806.

\section*{NEW HE NE LASER TUBES \$35 \\ Dealer Inquiries Invited. Free Catalog!}

MEREDITH INSTRUMENTS: 6403 N. 59th Ave. Glendale, AZ 85301 - (602) 934-9387 "The Source for Laser Surplus"

\footnotetext{
INVESTIGATORS, experimenters - Quality new plans. Hard to find micro and restricted devices. Free catalog. Self addressed stamped envelope to KELLLEY SECURITY INC., Suite 90, 2531 Sawtelle Blvd., Los Angeles, CA 90064.
CB Tricks II book. Power amplifier design and theory, UHF CB tune ups. Send \$19.95 MEDICINE MAN CB, PO Box 37, Clarksville, AR 72830.
}


\section*{Pacific Cable Company, Inc.} 73251/2 RESEDA BLVD., DEPT. R-3 - RESEDA, CA 91335 (818) 716-5914 - No Collect Calls • (818) 716-5140

IMPORTANT: WHEN CALLING FOR INFORMATION Please have the make and modelः of the equipmen used in your area. Thank You

\section*{UNICORN YOUR I.C. SOURCE}

\section*{COLLIMATOR PEN}


A low power collimator pen containing a MOVPE grown gain guided GaAlAs laser. This collimator pen delivers a maximum CW output power of 2.5 mW at \(25^{\circ} \mathrm{C}\).
These collimated laser sources are designed for industrial applications such as data retrieval,
telemetry, alignment etc
The non-hermetic stainless steel encapsulation of the pen is specifically designed for easy alignment in an optical read or write system, and consists of a lens and a laser device. The lens system collimates the diverging laser light. The wavefront quality is diffraction limited.
The housing is circular and precision manufactured with a diameter of 11.0 mm and an accuracy between + and \(-11 \mu \mathrm{~m}\).
HST OREE \(\$ 400.00\) PRICE \(\$ 39.99\)
Quality Components - Low Prices Since 1983

\section*{LASER DIODE}

Designed for general
 industrial low power ap plications such as reading optical discs, optical memories, bar code scanners, security systems, alignment etc
The gain guided laser is constructed on a ntype gallium arsenide substrate with a Metal
Organic Vapor Phase Epitaxial process (MOVPE)
The device is mounted in an hermetic SOT148D (diameter 9.0 mm ) encapsulation.

The SB1053 is standard equipped with a monitor diode, isolated from the case and optically coupled to the rear emitting facet of the laser. This fast responding monitor diode can be used as a sensor to control the laser optical output level.

\section*{LISTPRE 80.00 PRICE \(\$ 9.99\) \\ We Carry A Full Line of Components \\ CALL FOR FREE CATALOG EPROMS}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{CALL FOR FREE CATALOG} \\
\hline \multicolumn{6}{|c|}{EPROMS} \\
\hline stick * & PINS & DESCRIPTION & 1.24 & 25-99 & 100* \\
\hline 1702 & 24 & \(256 \times 4\) Ins & 3.99 & 3.79 & 41 \\
\hline 2708 & 24 & \(1024 \times 8450 \mathrm{~ns}\) & 5.79 & 5.50 & 4.95 \\
\hline 2758 & 24 & \(1024 \times 8450 \mathrm{Os}\) & 3.99 & 3.79 & 3.41 \\
\hline 2716 & 24 & \(2048 \times 8450 \mathrm{~ms}(25 \mathrm{v})\) & 3.19 & 3.03 & 2.73 \\
\hline 2716.4 & 24 & \(2048 \times 8350 \mathrm{~ns}(25 \mathrm{~V})\) & 3.39 & 3.22 & 2.90 \\
\hline TMS2716 & 24 & \(2048 \times 8450 \mathrm{~ns}\) & 6.29 & 5.98 & 5.38 \\
\hline 27 Cl 16 & 24 & \(2048 \times 8450 \mathrm{SS}\) (25v-CMOS) & 3.59 & 3.41 & 3.07 \\
\hline 2732 & 24 & \(4096 \times 8450 \mathrm{~ns}(25 \mathrm{v})\) & 3.79 & 3.60 & 3.24 \\
\hline 2732A.2 & 24 & \(4096 \times 8200 \mathrm{~ns}(21 \mathrm{v})\) & 379 & 360 & 3.24 \\
\hline 2732A & 24 & \(4096 \times 8250 \mathrm{~ns}\) (2TV) & 3.69 & 3.51 & 3.16 \\
\hline 2732a-4 & 24 & \(4096 \times 8450 \mathrm{~ns} \mathrm{(2TV)}\) & 3.09 & 2.94 & 2.65 \\
\hline TMS2532 & 24 & \(4096 \times 8450 \mathrm{~ns}\) (25v) & 5.79 & 5.50 & 4.95 \\
\hline 27C32 & 24 & \(4096 \times 8450 \mathrm{~ms}(25 \mathrm{v}\)-CMOS) & 4.19 & 3.98 & 3.58 \\
\hline 2764.20 & 28 & \(8192 \times 8200 \mathrm{~ns}\) (21v) & 3.99 & 3.79 & 3.41 \\
\hline 2764 & 28 & \(8192 \times 8250 \mathrm{~ns}\) (27v) & 3.59 & 341 & 3.07 \\
\hline 2764A-20 & 28 & \(8192 \times 8200 \mathrm{~ns}(12.5 \mathrm{v})\) & 3.99 & 3.79 & 3.41 \\
\hline 27644 & 28 & \(8192 \times 8250 \mathrm{~ns}(12.5 \mathrm{~V}\) ) & 3.59 & 3.41 & 3.07 \\
\hline TMS2564 & 28 & \(8192 \times 8250 n \mathrm{~ns}\) (25v) & 6.79 & 6.45 & 581 \\
\hline 27128-20 & 28 & \(16.384 \times 8200 \mathrm{~ms}(21 \mathrm{v})\) & 579 & 5.50 & 495 \\
\hline 27128 & 28 & \(16.384 \times 8250 \mathrm{~ns}\) (21V) & 4.79 & 4.55 & 4.10 \\
\hline 27 Cl 28 & 28 & \(16.384 \times 8250 \mathrm{~ns}\) (21V) & 5.39 & 5.12 & 461 \\
\hline 27256-20 & 28 & \(32.768 \times 8200 \mathrm{~ns}(12.5 \mathrm{~V})\) & 5.99 & 5.69 & 5.12 \\
\hline 27256 & 28 & \(32.768 \times 8250 \mathrm{~ns}(12.5 \mathrm{v})\) & 4.99 & 4.74 & 427 \\
\hline \(27 C 256\) & 28 & \(32.768 \times 8250 \mathrm{~ns}\) ( 12.5 V -CMOS) & 5.99 & 5.69 & 5.12 \\
\hline 27512-20 & 28 & \(65.536 \times 8200 \mathrm{~ns}\) (12.5V) & 10.49 & 9.97 & 8.97 \\
\hline 27512 & 28 & \(65.536 \times 8250 \mathrm{~ns}(12.5 \mathrm{~V})\) & 9.49 & 9.02 & 8.12 \\
\hline \(27 \mathrm{C512}\) & 28 & \(65.536 \times 8250 \mathrm{~ns}(12.5 v-C M O S)\) & 9.99 & 949 & 854 \\
\hline 27 Cl 1024 & 32 & \(131,072 \times 8200 \mathrm{~ns}\) ( 12.5 v -CMOS) & 27.99 & 26.59 & 23.93 \\
\hline 68764 & 24 & \(8192 \times 8450 \mathrm{~ns}\) & 18.99 & 18.04 & 16.24 \\
\hline 68766 & 24 & \(8192 \times 8450 \mathrm{~ns}\) & 15.99 & 1519 & 13.67 \\
\hline
\end{tabular}

\section*{UNICORN ELECTRONICS}

10010 Canoga Ave., Unit B-8 Chatsworth, CA 91311 ORDER BY PHONE (TOLL FREE)
(800) \(824-3432\) (OUTSIDE CALIFORNIA) IN CALIFORNIA (818) 341-8833 ORDER BY FAX (818) 998-7975

\section*{ANTIQUE RADIO CLASSIFIED Free Sample! Antique Radio's Largest Circulation Monthly Articles. Ads \& Classifieds. \\ 6-Month Trial: \$11. 1-Yr: \(\$ 20\) ( \(\$ 30-1\) st Class) \\ A.R.C., P.O. Box 802-L4, Carlisle, MA 01741}

DETECTION - Surveillance, debugging, plans, kits, assembled devices, Latest high-tech catalog \$5. DETECTION SYSTEMS, 2515 E . Thomas, \#16-864F, Phoenix, AZ 85016.
DESCRAMBLING, new secret manual. Build your own descramblers for cable and subscription TV. Instructions, schematics for SSAVI, gated sync, sinewave, (HBO, Cinemax, Showtime, UHF, adult) \(\$ 8.95, \$ 2.00\) postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.
BUILD your own remote controlled robot, common construction materials, electronic kits, plans \$11.95, free details, ROBOT WORKS, Box 1979, Colorado Springs, CO 80901.
SINGERS. At last, build your own vocal filter. Remove lead vocals from standard stereo records, CDs, tapes, FM broadcasts, so you can be the lead singer of your favorite band. Schematic/theory \(\$ 6.95\). PC board \(\$ 12.95\). Parts also available. WEEDER TECHNOLOGIES, 14773 Lindsey, Mt. Orab, OH 45154.


\section*{TUBES - 2000 TYPES DISCOUNT PRICES!}

Early, hard-to-find, and modern tubes. Also transformers, capacitors and parts for tube equipment. Send \(\$ 2.00\) for 24 page wholesale catalog.
ANTIQUE ELECTRONIC SUPPLY 688 W. First St. Tempe, AZ 85281*602/894-9503

KITS Preamplifiers, amplifiers, antenna amplifier, alarm, dice, power meter VU meter, motion detector, siren, chime, door bell, timers and trainers. Catalog: ARLI ELECTRONICS, 2155 Verdugo BIvd. \#22, Montrose, CA 91020.
STRESSED out? Relaxtion technique easily learned with the aid of a simple electronic device. Not hypnosis! Plans \$9.95. BLUE CHIP ENGINEERING, Dept. 33, PO Box 1100, Walnut, CA 91789.

SURVEILLANCE schematics. Easy to build. Bug detector \(\$ 5.00\), FM transmitter \(\$ 5.00\), phone snoop \(\$ 5.00\), all three \(\$ 12.95, \$ 1.00\) postage. CABLETRONICS, Box 30502R, Bethesda, MD 20824.

PC/XT - Selectively boot from A : or B : drives - 5 1/4" or \(31 / 2\)." Easy to build inexpensive switching device Plans \(\$ 5.00\). REUTER ENGINEERING, INC. PO Box 24514, MpIs, MN 55424.
REMOTE controlled car starter. Start your car from 75' away. Only \(\$ 139.95\). Remote controlled car alarm with starter interrupt \(\$ 129.95\). Both kits include hardware and fully illustrated instructions. Prices include shipping. Check or money order. For free information call or write. DARK GLASS SHIELD, 1550 West 84 Street, Suite 69-A, Hialeah, FL 33014. (305) 362-1596.

\section*{SATELLITE TV}

FREE catalog - Do-it-yourself save 40-60\%. Lowest prices worldwide, systems, upgrades, parts, all major brands factory fresh and warrantied. SKYVISION, 2009 Collegeway, Fergus Falls, MN 56537. 1 (800) 334-6455.

DESCRAMBLER: Build our low cost video only, satellite TV descrambler for most satellite channels. Uses easy to get, everyday parts. Board \& plans \(\$ 35.00\) US funds. Board, plans \& parts \(\$ 99.00\) US funds. Wired \& tested unit \(\$ 189.00\) US funds. Send check, money order or Visa to: VALLEY MICROWAVE ELECTRONICS, Bear River, Nova Scotia, Canada BOS 180 or phone (902) 467-3577. 8am to 4 pm eastern time. Note: educational project only. Not to be used illegally.

VIDEOCIPHER II manuals. Volume 1 - hardware, Volume 2 - software. Either \(\$ 32.45\). Volume 3 projects/software - \(\$ 42.45\). Volume 4 - repair \(\$ 97.45\) Volume 5 documentation - \(\$ 42.45\). Cable Hacker's Bible - \(\$ 32.45\). Clone Hacker's Bible \(\$ 32.95\) CODs: (602) 782-2316. \(220+\) Megabytes IBM-PCIXT software - catalog- \(\$ 3.00\). TELECODE, Box 6426-RE, Yuma, AZ 85366-6426.
ATLANTIC GROUP ENTERPRISES INC. Buy satellite equipment. Dealing directly with the seller. We can show you how. Toll free 1 (800) 446-4039.
VIDEOCYPHER II descrambling manual. Schematics, video and audio. Explains DES, EPROM, CloneMaster, 3Musketeer, pay-per-view (HBO, Cinemax, Showtime, adult, etc.) \(\$ 13.95, \$ 2.00\) postage. Collection of Software to copy and alter EPROM codes, \(\$ 25\). CABLETRONICS, BOx 30502R, Beth esda, MD 20824

\section*{CABLE RENTERS \\ STOP! \\ Ifyour currenlly renting your cable equipment it's time to lookinto owning your own. You can save up to \(\$ 100\) plus every year. Saisisacion Guaraneed. \\ We carry all the major brands of Converters, Remote controls and Descramblers. JERROLD, OAK, ZENITH, EAGLE, HAMLIN, SCIENTIFIC ATLANTA, Many more. Fast courteous sevice. \\ Call today 512-250-8816 or write for your Free catalog. \\  Nu-Tek Electronic 5114 Balcones Woods dr SuiteH307 Dept.298R Austin; Tx 78759}

\section*{TELEPHONE CALL SCREENING}

REAL telephone call screening! Protect telephones, Fax, computer, hearing impaired, day sleepers. Ellminate wrong numbers, prank and sales calls. Plugin unit provides variable ring cadence signalling. True unlisted number on any touchtone private line. Automatic call routing. Send \(\$ 13.95\) for complete theory and construction manual. ELECTRONIC CONTROL Struction manual. ELECTR, Wernersville, PA 19565.

\section*{PROJECT CABINETS/ ENCLOSURES}

RIGID 1/16 aluminum shell, hardwood trim, contemporary styling. Several sizes and styles available \$10.99-\$26.99, free brochures. PYRAMID ELECTRONIC PRODUCTS, 15020 LaGrange Road, Suite 2100, Orland Park, IL 60462.

\section*{BUSINESS OPPORTUNITIES}

EASY work! Excellent pay! Assemble products at home. Call for information. (504) 641-8003 Ext. 5192.

MAKE \(\$ 50 / \mathrm{hr}\) working evenings or weekends in your own electronics business. Send for free facts. industry, Box 531, Bronx, NY 10461.

\section*{CABLETV DESCRAMBLER LIQUIDATION!}
- Major Makes \& Models!
- Will match or beat anyone's prices!
- Dealer discounts at 5 units!
- Examples:

HAMLIN COMBOS , \$44 ea. (Min. 5)
OAK ADDION
\(\$ 40\) ea. (Min. 5)
OAK M35B
\(\$ 60\) ea. (Min. 5)
WEST COAST ELECTRONICS
For Information: 818-709-1758
Catalogs \& Orders: 800-628-9656

YOUR own radio station! AM, FM, TV, cable. Licensed/unlicensed. BROADCASTING, Box \(130-\) F3, Paradise, CA 95967.
INVENTIONS, ideas, technology wanted for presentation to industry/exhibition at national innovation exposition. Call 1 (800) 288-IDEA.
LET the government finance your small business. Grants/loans to \(\$ 500,000\). Free recorded message: (707) 449-8600. (KS1).

LEARN gold, silver, platinum scrap recycling business. Free information. Write: RECYCLING, Bo: 11216RT, Reno, NV 89510-1216.
3D color camera. Life-like pictures. No special glasses needed. \(\$ 3.00\) sample photo. Distributors wanted. CHECKMATE COMMUNICATIONS, PCI Box 11-0808, Brooklyn, NY 11211.


MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

\title{
C General Technics Quality computor Systems \\ (516) 981-9473 \\ Sove hundreds of dollars assembing your
Own IBM XT, AT, or 386 compotible computer
}

Complete AT Computer System \(\$ 675\) Amber Monitor, 512 Lk Hemory, 109 Enhancod Keypord, 1.2 m Flippy Orive

FREE CATALOG
P.O. Box 2676. Loke Ronkonkoma, NY 11779

\section*{SOFTWARE}

FREE software for IBM and compatibles! Info \$1.00. ELUE CHIP ENGINEERING, Dept. 33, PO Box 1100, Walnut, CA 91789.

\section*{COMPUTER BOOKS}

DISCOUNT computer books. All titles available, including recent releases. Please call or write for our latest catalog. BOOKWARE, 147 Campville Road, Northfield, CT 06778. 1 (800) 288-5662.

\section*{INVENTORS}

INVENTORS! Can you patent and profit from your idea? Call AMERICAN INVENTORS CORPORATION for free information. Over a decade of service 1 (800) 338-5656. In Massachusetts or Canada call (413) 568-3753.

\section*{DIGITAL CAR DASHBOARDS}

BUILD yourself complete electronic dashboards. Informational package: \(\$ 2.00\) (refundable). MODERN LABS, \(2900 \cdot F\) Ruisseau, Saint-Elizabeth, QC. JOK 2JO, Canada.

\section*{ASSEMBLE YOUR OWN COMPUTER FOR LE\$\$}

10 MHz 8088 Compatible Kit \(\$ 379\) -4.77/10 MHz 8088 Mothorboard -256KB RAM (840KB max) - 150W Power Supply - Floppy Disk Controller - One \(51 / 4^{4} 360 k B\) Drive - MonoGraphica Card w/P - 101 Kay Keyboard
- Case (3LED,2Button,Key) - 12' Amber Mono Monitor - Installation Guide \& Mar tua


12 MHz 80286 Compatible Kit - 12 MHz 80286 Motherboard -512 KB PAM (4 MB max) - 200W Power Supply - Floppy Diak Controller - One 5 1/4' 1.2 MB Drve - MonoGraphics Card w/P - 101 Kay Keyboard - Case (3LED,2Button,Koy) - 12" Amber Mono Monitor - Inctatiation Guldo \& Manual


20 MHz 80386 Compatible Kit ............. \(\$ 1399\)
All Components Fully Tested Before Ship One Year Warranty on All Parts Instaliation Avelieble at No Extra Charge III VISA : MC add 3\% Amox add 4\%
Price a Quantly zubfect to change whout prior notice 15\% Aestocking Fee on All Non-Dofecthe hems
JINCO COMPUTERS INC. 5122 WALNUT GROVE AVE. SAN GABRIEL, CA 91776 Tel: (818) 309-1108 Fax: (818) 309-1107
CIRCLE 182 ON FREE INFORMATION CARD



VIDEO-LINK Enterprises, Inc. 520 GLENBROOK RD., SUITE 202 STAMFORD, CT 06906
ORDERS: 1-800-622-9022
CATALOG \& INFO: 203-975-7543
MONDAY - FRIDAY 10 AM - \(5: 30\) PM, E.S.T.
IMPORTANT: Have make and model
\# of the equipment used in your area.


\section*{AUDIO POWER AMP IC's}
continued from page 56


FIG. 22-2- OR 5-WATT PHONO AMPLIFIER with RIAA equalization.
bridge configuration, to provide 4 watts to an 8 -ohm speaker when using a 12 -volt power supply. The "balance" potentiometer is used to set the quiescent output of the two IC's at identical values, in order to minimize the quiescent current consumption of the circuit.

Note that the LM388 has fairly poor supply-line ripple rejection. If any such problems come about, they can usually be overcome by wiring a \(10-\mu \mathrm{F}\) (or larger) capacitor between pin \(l\) and ground

\section*{LM380/LM384 circuits}

The LM380 (Fig. 20) can work with any supply from 8 to 22 volts. It can deliver 2 watts into an 8 -ohm load when operated with an 18 -volt supply, but it needs a good external heat sink to operate at that power level. Its differential input terminals are both ground-referenced, and the output automatically sets at a quiescent value of half of the supply voltage. Its voltage gain is fixed at \(50(34 \mathrm{~dB})\), the output is short-circuit proof, and the

IC is provided with internal thermal limiting.

The LM384 is simply an "uprated" version of the LM380, capable of operating from up to 28 volts and of delivering 5 watts into an external load. Both IC's are housed in a 14 -pin DIP, in which pins 3-5 and 10-12 are intended to be thermally coupled to an external heat sink

Figures 21 and 22 show some practical applications of those two audiopower amplifier IC's. Fig. 21 shows how to use either IC as a simple \(\times 50\) amplifier with enhanced ripple rejection (via C 2 ) and a very simple form of volume control (R2). Alternatively, Fig. 22 shows how to use either IC as a phono amplifier with RIAA equalization (via R1-C4). Also note that either IC can be used in the "bridge" mode to provide extra power when connected the same as Fig. 19. In that setup, a pair of LM380's would produce 4 watts when powered from 18 volts, and a pair of LM384's would produce 10 watts when powered from 22 volts. R-E


\section*{Husband. Grandfather. Great American Investor.}

When Bob Lawrence joined the railroad nearly 30 years ago, he began buying U.S. Savings Bonds for his retirement. Now he buys them for his grandkids. "Bonds pay good strong rates and they're simple to purchase," he says. Become the next Great American Investor. Call us to find out more. U.S. SAVINGSBONDS


1-800-US-BONDS
A public service of this publication

 High Performance Universal
B.g.g.8.8.E.8.e.

Counter timer Module/Panel Meter

INTRODUCTORY PRICING
Quantity
1-10
11-99
\(100+\)
Engineering Evaluation Kit \$250.00
OPTOELEGTRONIGS ING.
5821 N.E. 14th Avenue - Fort Lauderdale, Florica 33334 (800) 327.5912 - FL (305) 771-2O50 • FAX (305) 771-2052

Price
189.00
159.00
129.00 CIRCLE 190 ON FREE INFORMATION CARD

EDUCATION \& INSTRUCTION
MAGIC! Four illustrated lessons plus inside information shows you how. We provide almost 50 tricks including equipment for four professional effects. You get a binder to keep the materials in, and a oneYear membership in the International Performing your name gold-embossed. You get a one-year subscription to our quarterly newsletter "IT's MAGIC!" Order now! \(\$ 29.95\) for each course \(+\$ 3.50\) postage and handling. (New York residents agIC COURSE, state and local sales tax). THE MAGiC COURSE, 11735.


LEARN IBM PC assembly language. 80 sample programs. Disk \$5. Book \$18. ZIPFAST, Box 12238, Lexington, KY 40581-2238.
INSTALL your own car stereo! Professional secrets to buying, installing, troubleshooting. Complete guide only \(\$ 8.00\). WAYNE GIPSON, 1415 Broadway, Parsons, KS 67357.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{} \\
\hline M A Q A Z I N E 714.632.7721 & Buberidetom 耳iveo \\
\hline GIVE YOURSELF A BREAK - A PRICE BREAK! & Srd Clase Mein-ura \\
\hline NUTS 6 VOLTS WHL Say You mon &  \\
\hline ON ELEJTRONIC PARTS \& ERUIPMENT & Lecrime 38000 \\
\hline Plos shi w you where to find unio & 4st Clene Mat \\
\hline unus & MIxico 32200 \\
\hline CR & air Maill \\
\hline tiun Publiastion For The Buring And Solling Of & + \\
\hline
\end{tabular}

WANTED
INVENTIONS/new products/ideas wanted: Call TLCI for free information 1 (800) 468-7200 24 hours/ day - USA/Canada.
INVENTORS! Confused? Need help? Call IMPAC for Free information package. In US and Canada: 1 (800) 225-5800.

SEISMOMETER wanted to measure earthquakes. Pay cash. D. HUTCHISON, 4000 Little Timber, Edmond, OK 73034. (405) 341-9615.



\section*{CABLE TV DESCRAMBLERS}


1-\$89.00 10-\$69.00 100-Call Last channel recall-Favorite channel select75 channel-Channel scan-Manual fine tune One year war ranty-surge protection-HRC \& Standard switchable and much more. Call Todav!
INFORMATION(402)554-0417 Orders Call Toll Free 1-800-624-1150
M.D. ELECTRONICS

115 NEW YORK MALL SUITE 133E
OMAHA, NE. 68114
CIRCLE 53 ON FREE INFORMATION CARD

\section*{BESTBYMAIL}
, Box 5 , Saraso, FL 34230 3249, Mllilani, HI 96789
\(\qquad\)
HAVING CREDIT PROBLEMS? For our National Credit Guide rush \(\$ 27.95\) to: DM Manuals, 3377 Wilshire Blvd. Dept. 1022, Los Angeles, CA 90010. 30 Days Money Back Guarantee!
NEED CREDIT? \(\$ 1,500+\) Gold Card. No deposit. No turndowns. Visa avallable. 1(602)420-1486.
EARN \(\$ 2,000\) PER 1,000 envelopes you process at home. Easy plan. Free information send self-addressed stamped envelope: Lincoln Enterprises, POB 752209, Houston, TX 77275-2209


MASTERCARD AND VISA are now accepted for payment of your advertising. Simply complete the form on the first page of the Market Center and we will bill.

CABLE T.V. CONVERTERS

\section*{WHY PAY A HIGH MONTHLY FEE?}


All Jerrold, Oak, Hamlin, Zenith, Scientific Atlanta, Magnavox and all specialized cable equipment available for shipment within 24 hours. For fast service MC / VISA or C.O.D telephone orders accepted (800) 648-3030 60 Day Guarantee (Quantity Discounts) 8 A.M. to 5 P.M. C.S.T. CLOSED WEEKENDS. Send self-addressed Stamped envelope ( 60 c postage) for Catalog.


No Illinois Orders Accepted

\section*{GET OUT OF TIIFDAKK.}

The Consumer Information Catalog will enlighten you with helpful consumer information It's free by writing -

\section*{Consumer Information Center \\ Dept. TD, Pueblo, Colorado 81009}


\section*{THE ELECTRONIC GOLDMINE}

\section*{AUDIO UPDATE}
continued from page 77
records. 1 agreed, and we made a date for the following week

When I arrived, and after Bill introduced by to several Japanese engineers, I was ushered into the company listening room. There I was confronted with three visually identical pairs of speakers labeled "A," "B," and "C"-obviously the same model that had been reviewed so well by our test lab. Bill handed me the control of a threeway switching system and asked me to switch among the three pairs of speakers and evaluate their sound quality. Since all the systems looked identical, I didn't know quite what to expect, but no more than about 15 minutes were needed to arrive at an opinion based on my \(A / B / C\) comparisons. I said that according to my ears system A sounded bad, system B was pretty good, and system C also sounded bad-but different from A. Bill seemed pleased with my response, but the Japanese seemed
puzzled and upset.
Here's where the inscrutable part comes in. Later, in private, I asked Bill to explain exactly what was happening. He said that the Japanese had been thrilled by our favorable test report and decided to heavily promote their speaker system in the U.S. In order to save the shipping costs from Japan, they intended to build the systems here, using an American-made cabinet and either local- or Japa-nese-manufactured drivers. To Bill's ears, the two pairs of locally assembled systems ( A and C in my tests) sounded quite inferior to the original (B), but the Japanese insisted that they all sounded alike! That's why Bill had brought my ears into the act.

I've thought about that experience over the years, and have yet to figure out exactly what went wrong. I can understand that the Japanese engineers might prefer a different sonic quality (frequency balance) than I do, but the fact that they denied that there were any audible differences in the sound of three obviously different-

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{MARK V NEW FREE GATALOG IS NOW AVAILABLE} & CALL (213) 888-8988 ORDER TOLL FREE IN CALIFORNIA 800 FAX (213) 888-6868 & & & \[
83
\] \\
\hline  & s the level of difficulty in the assembling & g of our & \[
\begin{aligned}
& \text { ur Products } \\
& \text { A-820A } \\
& \text { TA-120 S } \\
& \text { MK2 }
\end{aligned}
\] &  &  &  & Fully & Ass & mbled \\
\hline \multicolumn{4}{|c|}{AMPLIFIERS} & \multicolumn{6}{|c|}{MISCELLANEOUS} \\
\hline \multicolumn{4}{|r|}{AMPLIFIERS KT ASSEM} & \multicolumn{2}{|l|}{MoO} & & & & \\
\hline \multirow[t]{2}{*}{TA-28BMK2
TA-50A/B TA-50C} & \multirow[t]{2}{*}{} & 30.00 & & TV-25 & & & & & \\
\hline & & & 16.581 & Try &  & phonect & & & \\
\hline  & \multirow[t]{2}{*}{} & 27 & 38.81 &  & Sounditouch & Trol Swich & & & \\
\hline \multirow[t]{2}{*}{} & & \begin{tabular}{l}
50 \\
35 \\
\hline 5 \\
\hline
\end{tabular} & 70.00 &  & intrarea & rol Unit \(\boldsymbol{\Delta} \mathbf{4} \mathbf{4}\).................. & & & 0 \\
\hline & \multirow[t]{2}{*}{30Wx Storoo Premain Amp} & & & \({ }_{\text {TY.43 }}\) & Bar/ Oigita & l Retar a ..................... & & & \\
\hline \multirow[t]{2}{*}{} & & & 75 & TY-45 & 20 Steps Ba & ot tudio Level Display \(4 \boldsymbol{\Delta}\) & & & \\
\hline & & \({ }^{288} 8\) & 34.93 & TYM. & \({ }_{4}\) Superior Ele &  & & & \(\begin{array}{r}27.24 \\ 150.00 \\ \hline\end{array}\) \\
\hline \multicolumn{2}{|l|}{(tater} & & & Sm-333 & Audio/ Vidoo & Ond Sond Processor \(\triangle \Delta \Delta\) & & & \\
\hline  & Bow Bow & & & \multicolumn{6}{|c|}{\multirow[t]{2}{*}{IS STRUMENTS}} \\
\hline TA.1500 &  & & 80 & & & & & & \\
\hline TA.2200 & FET Super class .A. \({ }^{\text {a }}\) OC Pre-Amp. & & 58.24 & SM.48 & 41/2 H1-Procision & OP.M. & & & \\
\hline  &  & & 116.88
90.80 & SM-48 & S \(41 / \mathrm{H}\)-Preceision & DP.M. \(/\) athdrd casol & & & 50

50 \\
\hline  &  & & 41.38
103.00 & \begin{tabular}{l} 
SM-100 \\
FCCOOA \\
\hline
\end{tabular} & (150 MC Digita & eluency & & & \\
\hline \multicolumn{4}{|l|}{} & \multicolumn{6}{|c|}{METAL CABINETS WITH ALUMINUM PANEL:} \\
\hline & \multirow[t]{3}{*}{\begin{tabular}{l}
O-15V 2 A Regulated DC power Supply \\
 \(0-50 \mathrm{~V} 3 \mathrm{~A}\) Regulated DC Power Supply
\end{tabular}} & & & \multirow[t]{3}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} & \multicolumn{3}{|l|}{\multirow[t]{3}{*}{\[
\begin{aligned}
& 820.18 \\
& 20.60 \\
& 30.00 \\
& 30.00 \\
& 33.00 \\
& 20.50
\end{aligned}
\]}} \\
\hline & & & & & & & & & \\
\hline \multicolumn{9}{|l|}{\multirow[b]{3}{*}{\begin{tabular}{l}
- WE ACCEPT MANOR CREDIT CARUS MONEY ORUERS ANU CHECKS = BUSINESSE SHOWFOOM HOUAS (PACIFIC TIMEINUN -FRI \(9.3 U A M-500 F M\) SAT IUNUAM \\
 \\
 \\
MARK V ELECTRONICS. INC. - 8()19 E. Slauson Ave. Montebello. CA y()(24)
\end{tabular}}} & \\
\hline & & & & & & & & & \[
\mathrm{V} s \mathrm{CN}
\] \\
\hline & & & & & & & & & \\
\hline
\end{tabular}

\section*{ACITसासG SCIENTIFIC \＆ELECTRONTC PRODUCIS}

GRA1－ANTI GRAVITY GENERATOR ．．．．．．．．．．．．\(\$ 10.00\)

\section*{w}

RUBA－HI WATT BURNINGCUTING LASER
＜
ERBIC5－MIVLONITY COIL GUN
즌LLS1－LASER LIGHT SHOW 3METHODS
E EH1－ELECTRONIC HYPNOTISM TECHNIQUES
E EMLI－LOWER POWERED COIL GUN LAUNCHER
－JL3－JACOB LADDER 3 MODELS
SDS－SEE IN THE DARK
\(\$ 20.00\)
\(\$ 2000\)
LEV1－LEVITATION DEVICE

I FMVIK－ 3 MILE FM VOICE TRANSMITTER
§ PFSIK－HAND CONTROLLED PLASMA FIRE SABER ．．．．\(\$ 49.50\)
K HIG7K－HI FUIXNEGATIVE OON GENERATOR
.\(\$ 4950\)
\＆PG5K－HI FUX NEGATIVE ION GENERATOR \(\$ 49.50\)

\section*{© PG5K－PLASMA LIGHTNING GLOBE \\ 2 HOLK－VISIBLE SIMULATED 3 COLOR LASER} \(\$ 44.50\)

吕 LOUGK -2.5 MW HAND－HELD VISIBLE LASER GUN ．\(\$ 249.50\) C LCU6K－2．5 MW HAND－HELD VISIBLE LASER GUN ．．\＄249．50 IOG2K－ION RAY GUN，proiect enemy without wires ．．．．\(\$ 249.50\) © 10G2K－ION RAY GUN，project energy without wires ．．\＄12995 TKE1K－TELEKINETIC ENHANCERVELECTRIC MAN ．．．\(\$ 79.50\)
VWPM \(7 K ~-~\)
2 MILE AUTO TELEPHONE TRANSMITTER ．\(\$ 49.50\)
－ASSEMBLEDIN OUR LABS
LIST10－INFINITY XMTR Listen in via phone lines ．．．．\(\$ 199.50\) IPG70－INVISIBLE PAIN FIELDBLAST WAVE GENERATOR \(\$ 74.50\) \(\because\) ITM10－100，000 VOLT INTMMIDATOR UP TO 20＇．．．．．． 99.50 －TAT30－AUTOMATIC TELEPHONE RECORDING DEVICE ．\(\$ 24.50\) H1 PSP40－PHASOR SONIC BLAST WAVE PISTOL ．．．．．．\(\$ 89.50\) Co DNE10－ALL NEW 26 ＂VIVID COLORED NEON STICK ．．\(\$ 74.50\) Ce LGU20－ 5 T0 1 MW VISIBLE RED HeNe LASER GUN ．\(\$ 199.50\) －BLS10－100，00 WATT BLASTER DEFENSE WAND ．．．\(\$ 89.50\)

EASY ORDERING PRDCEDURE－TOLL FREE 1－800－221－1705 or 24 HRS ON 1．603－673－4730 or FAX IT TO 1－603－672－5406 VISA，MG CHECK，MOINUS FUNDS．INCLUDE 10\％SHIPPING．ORDERS \(\$ 100.00\) \＆UP ONLY ADD \(\$ 10.00\) ．CAJALOG \(\$ 1.00\) OR FREE WITH ORDER．

\section*{INFORMATION UNLIMITED P．0．BOX 716，DEPT．A2，AMHERST．NH 03031}
sounding speakers puzzles me to this day．Perhaps something got lost in the translation．

\section*{Postscript}

About a year later I had an unex－ pected visitor from Japan．The gentleman had been on assign－ ment in California for the pre－ vious month or so setting up a slow－speed recording center for a major Japanese company． Things had gone well，until the question of monitor speakers for the studio came up．It seems that my visitor felt that the＂West－ Coast＂speakers used by so many U．S．studios suffered from excessive colorations that in his view made it impossible to accu－ rately monitor a recording with them．He was in trouble with the home office because he refused to use the＂standard＂monitors in the studio he had designed．

I was surprised and gratified to encounter a Japanese engineer who seem to hear things the same way I did，and we entered into a wide－ranging discussion
about sound preference and sonic accuracy．I mentioned that in our test program we had en－ countered only one Japanese speaker that tested well and sounded right to our ears．＂Yes，＂ said my new friend，＂I know of your test report since I designed that speaker，and，incidentally，it was a best seller in Japan！＂I was flabbergasted！There should be a lesson in all this－other than that some people，whatever their na－ tionality，can hear and others can＇t－but l＇ll be damned if I know what it is．

R－E

（4）motorola Polydax

\section*{1－800－338－0531 \\ （1）PIONEER}

\section*{WALNUT SPEAKER} CABINET KIT
Super quality． genuine walnut veneer cabinet．Kit includes：routed and mitred top．sides， and bottom in unfinished \(3 / 4^{\prime \prime}\) walnut veneer．Cut your own custom holes in the from holes in the fromt and rear to match your drivers． \(15^{\prime \prime} \times\)
\(24^{\prime \prime} \times 11^{\prime \prime}\) ．Volume： 1.9 cubic feet．

\section*{SPEAKER CONTROL PANEL \\ Panel with 50 watt L－pads for tweeter and midrange and built－in LED power
meter． \(5^{\prime \prime} \times 21 / 2^{\prime \prime} 100\) watt vernion 部吕able \\ \＃260－235 \＄1450 \＄12．90}

12＂POLY WOOFER
Super duty， 40 oz．mimgel． 100 watts RMS， 148 watts max． 4 and 8 ohm compat ible（ 6 ohm ）． \(\mathrm{z}^{\prime \prime}\) voice coil \(\mathrm{fs}=25 \mathrm{~Hz}\) ．QTS \(=.166\) \(V A S=10.8 \mathrm{cu} \mathrm{h}\) ．
Response： \(25-1500 \mathrm{~Hz}\) ．Ne weight： 9 lbs．Pioneer \＃A \(30 \mathrm{GU} 40-51 \mathrm{D}\)
\＃290－125 \begin{tabular}{c}
\(\mathbf{\$ 3 6 . 8 0}(1-3)\) \\
\hline
\end{tabular}

\(\$ 34.50\)
\begin{tabular}{lll} 
\＃260－350 & \(\mathbf{\$ 2 2 . 5 0}(1.3)\) & \(\$ 19.95\) \\
\((4-\) up \()\) \\
\hline
\end{tabular}

\section*{PIONEER HORN} TWEETER

12＂SUB WOOFER
\[
\begin{aligned}
& \text { Response: } 25-700 \mathrm{~Hz} \text {. } \\
& \text { QTS }=31, \text { VAS }=10.3 \mathrm{cl} . \mathrm{ft.} \\
& \text { Pioneer } \# \mathrm{~A} .30 \mathrm{GU} 30-55 \mathrm{D} \text {. } \\
& \text { Net weicht: } \text { B Jhs. }
\end{aligned}
\] Net weight： 6 lbs． \(\$ 39.80\)
\(\$ 36.80\)
（4－up）

\section*{15＂THRUSTER WOOFER}

Thruster by Eminence． Made in USA．Poly foam surround， 36 oz．magnet 2－1／2＂， 2 layer voice coil． 180 watts RMS， 210 watt max． 4 ohm ． \(\mathrm{fs}-23.8\) \(\mathrm{Hz}, \mathrm{QTS}=.33, \mathrm{VAS}=17.9\) \(\mathrm{cu} \mathrm{ft} . \mathrm{SPL}=94.8 \mathrm{~dB} \mathrm{lW} /\) 1M．Net weight： 15 lbs．
\＃290－180 \begin{tabular}{ccc}
\(\$ 43.50\) \\
\((1-3)\) & \(\$ 39.80\) \\
\((4-4 p)\)
\end{tabular}

GRILL FRAME KIT


18＂EMINENCE WOOFER made in Usa
100 oz．magnet， \(3^{\prime \prime}\) voice coil． 250 watts RMS， 350 watts max． \(80 \mathrm{hm}, 30 \mathrm{~Hz}\) resonant frequency．22－ 2700 Hz response． Efficiency： \(98 \mathrm{~dB} 1 \mathrm{~W} / 1 \mathrm{M}\) ． Paper cone，treated accordian surround．Net weight： 29 lbs．
\begin{tabular}{ccc} 
& \(\$ 98.90\) & \(\$ 89.50\) \\
\(\# 290-200\) & \((1-3)\) & \((4-4 p)\)
\end{tabular}

TITANIUM COMPOSITE



Support America's colleges. Because college is more than a place where young people are preparing for their future. It's where America - and American business - is preparing for its future.

> Give to the college of your choice.


\title{
When You Need Resistors, We Sell You Resistors (And Gravy), But Not Printed Matter!
}

Resistors are one of the most common of electronic component parts and having a good reliable source for them is a necessity. For years we have been the lowest price leader in this (and many other) areas, and the following price comparison table proves that although we ask for a yearly Membership Fee of \(\$ 35.00\), you can recover your investment quickly after purchasing just a few thousand resistors, and what you will save on more than 10,000 additional items that we stock, is the so-called 'gravy' part of the whole deal.


> 12 Months Saving Guarantee We will refund the first year Membership Fee of any member who has purchased \(\$ 300\) or more worth of products from Electronic Buyers Club and has not saved an amount greater than the first year Membership Fee, if buying the same items elsewhere.

It is not that these other firms are trying to rip you off, the fact is that advertising in several Trade Magozines each month and printing and mailing hundreds of thousands of virtually the same catalog every few months cost a lot of money and they have to charge more. Call us today and start receiving components for your money instead of printed matter.

30 Days Money Back Guarantee We will refund the full Membership Fee of any new member of Electronic Buyers Club who within 30 Days after receiving the Membership Binder, returns the Binder to EBC and asks for the cancellation of Membership.

Mail-Order Electronics 24 Hour Order Hotline 415-592-8097
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{SIP \& SIMM MODULES} & \multicolumn{4}{|c|}{MICROPROCESSOR COMPONENTS} & \multicolumn{2}{|l|}{MISC. COMPONENTS} \\
\hline \multirow[t]{2}{*}{} & \multirow[b]{2}{*}{\(20 \mathrm{~ns} 256 \mathrm{~K} \times 9\) Simm (2 each)} & Z88, Z80A, Z808, SERIES & S 8000 SERIES Continued & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{8000 SERIES Continued
Parino. Price}} & \multicolumn{2}{|l|}{TANTALUM CAPACITORS} \\
\hline & & Part No. Price & PartNo. Price & & & TM. 1 i \({ }^{\text {¢ }}\) @ 35V..... 19 & \multirow[t]{2}{*}{} \\
\hline  & 100ns IMEG 9 SMM (2 each) ... 469.95 100ns \(256 \mathrm{~K} \times 9 \mathrm{SIP}\) (Has Leads) .... 49.95 & z80 ..................... 1.25 & 8155.2 & \multicolumn{2}{|l|}{\(8286 \ldots \ldots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ~\)} & \begin{tabular}{lll} 
TM1 & \(1 \mu \mathrm{f} @ 35 \mathrm{~V}\) \\
TM2.2... & 2.29 \\
\hline
\end{tabular} & \\
\hline \(41255498.80 \quad 262.14 \times 49\) B0ns 20 &  & Z88A-CTC \(\quad 1.129\) & \({ }_{8205}\) & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{8778 (25V) ( )........... 79.95}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{POTENTIOMETERS}} \\
\hline \({ }^{421000 A 88}\)-10 1,048,576x8 & \(\times 8 \mathrm{~S}\) & Z80A-DART - \(\quad 4.95\) & \({ }_{82 \mathrm{C} 11}{ }^{\text {a }}\). & & & & \\
\hline 421000A9A.BC 1.048.576x9 80ns 1 &  & Z80A-P1O & \(8212 \ldots \ldots\) - & \multicolumn{2}{|l|}{\({ }^{87844}\) (HMOS)(21V) \(\ldots 9.95\)} & \multicolumn{2}{|l|}{Values available (insert ohms into space marked "XX")} \\
\hline  & 169.95 &  &  & & & \multicolumn{2}{|l|}{5005 , \(1 \mathrm{~K}, 2 \mathrm{~K}, 5 \mathrm{~K}, 10 \mathrm{~K}, 20 \mathrm{~K}, 50 \mathrm{~K}, 100 \mathrm{~K}, 200 \mathrm{~K}, 1 \mathrm{MEG}\)} \\
\hline \multicolumn{2}{|r|}{\multirow[t]{2}{*}{7400}} & \multirow[t]{3}{*}{\begin{tabular}{l} 
Z80B-CTC \\
Z80B-.............................. \\
Z8400HB1 CPU BMLz \\
\hline
\end{tabular}} & \multirow[t]{2}{*}{\begin{tabular}{r}
8228 \\
\(8237-5 \ldots \ldots \ldots \ldots . . . . . . . . . . .4 .45\) \\
8243 \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{80286}^{8750} .10(10 \mathrm{MHz}\) )LCC 29.95}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{TRANSISTORS AND DIODES}} \\
\hline & & & & & & & \\
\hline Parta. & PariNo. \(\quad 1.910{ }^{10}\) & & \multirow[t]{2}{*}{\begin{tabular}{l}
\(8240 \ldots\) \\
8250 A \\
8250 B (FOI IBM) \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{\begin{tabular}{l}
80286 -10 ( 10 MHz )LCC 29.95 \\
\(80287.3(5 \mathrm{MHz}) \ldots \ldots . \quad 109.95\)
\end{tabular}} & \multicolumn{2}{|l|}{\multirow[t]{3}{*}{}} \\
\hline 7400 .............. 29.19 & 7474............... \(39 \quad 29\) & 8000 SEPIES & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & & \\
\hline \(7402 \ldots \ldots . .19 .19\) & \begin{tabular}{llll}
\(7475 . \ldots\) \\
\(747 \ldots\) & .49 & .39 \\
\hline
\end{tabular} &  & \({ }_{8}^{82514}\) & & & & \\
\hline 7404
7005 & \begin{tabular}{llll}
\(7476 \ldots \ldots \ldots .\). & .45 \\
7483 \\
\hline
\end{tabular} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(80387-20(20 \mathrm{MHZ}) \ldots 399.95\)}} & \multicolumn{2}{|l|}{SWITCHES} \\
\hline \(7405 \ldots \ldots \ldots \ldots \ldots \ldots\)
\(7406 \ldots \ldots \ldots\) &  & & & & & \multicolumn{2}{|l|}{JMT123 SPDT, on.on 1.25 206-8 SPST, 16-pndip 1.19} \\
\hline \(7407 \ldots \quad 39 \quad 39\) & \(7486 \ldots \ldots\) & \begin{tabular}{lr}
\(8052 A H B A S C\) \\
\(8080 A\) & 2495 \\
\hline
\end{tabular} & -8254. 495 & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(80387.25(25 \mathrm{MHZ}) \ldots . .499 .95\) \\
\(82284(8 \mathrm{MHz})\) \\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{MPC121 SPPT, Onomon 1.25 MS102 SPST. Momanary . 39} \\
\hline 7408
7410

710 &  &  &  & \multicolumn{2}{|l|}{DATA ACQUISTION} & \multicolumn{2}{|c|}{D-SUB CONNECTORS} \\
\hline  &  & \({ }^{80854-2}\)-...............3.39 3.59 & \({ }_{8}^{8256 . .}\) & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{DB25P Mae, 25-pin 69 | DB25S Female, 25-pn 75} \\
\hline 7414
7416 &  & \multirow[t]{2}{*}{\begin{tabular}{l}
\(8087(5 M H z)\) \\
\(8087-1(10 \mathrm{MHz}) \ldots . . . . . .169 .95\) \\
\hline 1695
\end{tabular}} & \multirow[t]{2}{*}{\({ }_{8272}^{8251 .}\)} & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{} \\
\hline  & 74:21 & & & \multicolumn{2}{|l|}{\({ }^{\text {ADC } 120505 C N-1 . . . . .19 .95}\)} & \multicolumn{2}{|l|}{LEDS} \\
\hline 7420 ……… . 29.19 & \({ }^{74123} \ldots \ldots \ldots \ldots \ldots . .4939\) & \multirow[t]{2}{*}{} & 827 & \multicolumn{2}{|l|}{AY-3-10150 .4 .95} & XC556RT134. Red. & \[
\begin{aligned}
& \text { XC556Y T13: Yellow.... } 17 \\
& \hline
\end{aligned}
\] \\
\hline 7427 ……... 29.19 &  & &  & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \mathrm{AY}-51015 \mathrm{~A} \\
& \mathrm{~A}-\ldots . . . \\
& \hline
\end{aligned}
\]}} & \multicolumn{2}{|c|}{IC SOCKETS} \\
\hline 7432 - & 7450 _- & & & & & IC SOC & Wire Wrap (Gold) L \\
\hline 7438............. 39 & 74151 & \multicolumn{2}{|l|}{STATIC RAMS} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
6500 / 6800
\]}} & 8LP Low Profle & \\
\hline & & \multicolumn{2}{|l|}{Partino. Function _Price} & & &  & \\
\hline 7446................89 89 & 74174............. 59.49 & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{Pan No.} & \multirow[t]{2}{*}{\[
24 \mathrm{LP}
\]} & 16WW \\
\hline 89.79 & \begin{tabular}{llll}
74175 & .59 & .59 \\
\hline 70
\end{tabular} & 2102 1024x1 & \multirow[t]{2}{*}{} & \multicolumn{2}{|l|}{6402.} & & 28 WW \\
\hline \(7473 \ldots \quad 3 \quad 39\) & 74193............ . 79 & \multirow[t]{2}{*}{\(\begin{array}{ll}2112 & 256 \times 4 \\ 2114 \mathrm{~N} & 1024 \times 4\end{array}\)} & & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{6502} 65\)}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(40 L P\) 29. 40WW}} \\
\hline \multicolumn{2}{|l|}{7} & & \multirow[t]{2}{*}{} & & & & \\
\hline \(741500 \ldots . . .26 .16\) & 74LS 139 & \begin{tabular}{l}
\(2114 \mathrm{~N} \cdot 2 \mathrm{~L}\) \\
21 C 14
\end{tabular} & & \multicolumn{2}{|l|}{\begin{tabular}{l}
\(65 \mathrm{CO2}\) (CMOS) … .......6.95 \\
6520 \\
\\
\hline
\end{tabular}} & \multicolumn{2}{|l|}{74HC HI-SPEED CMOS} \\
\hline & 74.5151 & \multirow[t]{2}{*}{6116 P -1} & \begin{tabular}{lr}
200 Ons \\
450 (CMOS \\
(CMOS \()\) & 1.99 \\
\end{tabular} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{\(\begin{array}{ll}\text { Pan No. } \\ 74 \mathrm{HCO} & \text { Price }\end{array}\)} & Parto. Price \\
\hline 744503........... 28.18 &  & & 100ns (16K) CMOS
150 ns (16K) CMOS
CM & \multicolumn{2}{|l|}{} & & \multirow[t]{2}{*}{\(74 \mathrm{HC175}\)} \\
\hline \begin{tabular}{lll}
744 LSO \\
74 LS 5 & & .28 \\
\hline
\end{tabular} &  & \({ }_{6116 L P .1}^{616}\) & 150ns (16K) LPCMOS & \multicolumn{2}{|l|}{6551.} & 74 HCOO
74 HCO & \\
\hline 74.5060 .59 & \({ }_{74 \text { LS161 }}\) & \(6116 L^{\text {P-3 }}\) 2048x8 & \begin{tabular}{ll} 
F0ns (16KK LP CNOS & 3.09 \\
\\
\hline 1509
\end{tabular} & \multicolumn{2}{|l|}{\(65 \mathrm{CB0} 2\) (CMOS)} & \(74 \mathrm{HCO2}\)
\(74 \mathrm{HCO4}\)
7 & 74 HC 240 \\
\hline 744S07............ 59.49 & 74LS163. & \multirow[t]{2}{*}{6264P-10
\(6264 P-15\)} &  & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{6800
6802}} & & 74 HC 244 \\
\hline \(744508 . \quad . \quad 28.18\) & 74LS164........... 59.49 & & 100ns (64K) LPCMOS & & & \[
74 \mathrm{HC} 10
\] & 74 HC 245 \\
\hline 74LS09............ . 28.18 & 7415165 - 75 &  & \multirow[t]{2}{*}{120 ns 64 KK LPCMOS \(\quad 675\)} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\({ }_{6820}^{6810}\) …...................... 1.25}} & 74HC14
74 HC 30 & \({ }_{74 \mathrm{HC} 253}\) \\
\hline 74.510 . \(\quad .26 .16\) &  & 6264 LP -15 8192x8 & & & & \({ }^{74 \mathrm{HC} 32}\) & \(74 \mathrm{HC259}\) \\
\hline  &  & \(6514-1024 \times 4\) & \begin{tabular}{l} 
350ns CMOS \\
\\
\hline
\end{tabular} & \multicolumn{2}{|l|}{} & \multirow[t]{2}{*}{} & \multirow[t]{2}{*}{\({ }^{74 H C 373}\)} \\
\hline 74LS20.......... 28.18 & & 43256.10 \({ }^{3}\) & toons (256k) Low Power .... 10.95 & \multicolumn{2}{|l|}{68821.} & & \\
\hline 74LS21........... 29.19 & 74LS 191 & \(43256-15 L \quad 32,766 \times 8\) & \begin{tabular}{l} 
150ns (256K) LOw Power \\
100 ns (256K) LP CMOS
\end{tabular}\(\quad . \quad . \quad .9 .95\) & \multicolumn{2}{|l|}{6845} & 74HC76.................... 35 & 74HC595 \\
\hline 744-527 & &  & 120 ns (256K) LP CMOS \(\quad 11.25\) & 6850 & 1.75 & \(74 \mathrm{HC86....}. \mathrm{\quad 29}\) & \({ }_{74 \mathrm{HC} 943}\) \\
\hline \(74-530\)
74.532 &  & \(62256 \mathrm{LP}-15 \quad 32,768 \times 8\) & 150ns (256K) LP CMOS \(\quad 10.95\) & & & \(74 \mathrm{HC123} \ldots{ }^{\text {2 }}\) - \(\quad .59\) & 74HC4040 … 79 \\
\hline 74L-538......... 35 & 74LS221 \(\quad .69 .59\) & & & MC6 & & 74HC125................. 49 & 74HC4049 …............. 29 \\
\hline 74L-S42 \(\quad\) … \(\quad .49 .39\) & 74LS240 \(\ldots\) _- \(\quad . \quad .59 .49\) & DYNAM & MIC RAMS & MC68000 10
\(M C 6800888\) & 1195
.\(\quad .849\) & 744C132 \({ }^{\text {a }}\). &  \\
\hline 744-547 &  & TMS 4416.12 16.384x4 & 120ns.... \(\quad 5.9\) & MC68010L10 & 19.95 &  & \({ }_{74 H C 4511 . \ldots . . . . . . . . . . . . ~}^{99}\) \\
\hline 744.573 & 74LS244.... & TMSA416.15 \({ }_{16}\) & 150ns. & MC68020RC12 & 59.95 & \({ }_{74+C 154} \ldots \ldots . . . . . . . . . . .1 .49\) & 74HC4514 \\
\hline 74LS75............ 39.29 & 74LS257............ . 49.39 & \(4116.15 \quad 16.384 \times 1\) & 150ns (MM5290N-2) - \(\quad\) 1. 1.99 & MC68450Lio. & -.. 29.95 & 74HC163................... 39 & 74HC4538 ................ 1.19 \\
\hline 744-576 \(\quad\) - \(\quad 3929\) & 74LS259....... 99.89 & \({ }^{4128.15}\) [13 \({ }^{131.072 \times 1}\) & 150 ns (Piggyback) \(\quad\) - \(\quad 4.49\) & MC68701. & & 74HC174............... 59 & 74HC4543 \\
\hline  & 74 -S2273. &  & 120 ns - \({ }^{\text {20, }}\) & MC68705U3S & 17.95 & 74HCT- & CMOS \(\Pi\) \\
\hline  & 74LS279.
\(74.367 \ldots \ldots \ldots \ldots\). & \(4164.150 \quad 65.536 \times 1\) & 150ns......... & MC68881RC16 & & & \\
\hline \(74 \mathrm{LS90} \quad \begin{aligned} & \text { 79 }\end{aligned}\) & 74LS373 ……... 7969 & \({ }^{41256-60}\) 262, 144× & \(60 \mathrm{~ns} \longrightarrow \quad 6.95\) & MC68881RC20 & 95 &  & 74HCT139 \\
\hline 74 L-S93 \(\ldots\). . . . . . 4939 & 744-S374......... 79.69 & \({ }^{41256580}{ }^{\text {a }}\) & 8005.
\(100 \mathrm{ns}\). & Commo & dore & \({ }_{74 \mathrm{HCT} \text { T04 }}\) & \(74 \mathrm{HCT174}\) - 29 \\
\hline \(\begin{array}{llll}74.5125 & 49 & 39 \\ 7\end{array}\) & 74LS541....... 1291.19 & 41256-120 262, \(14 \times 1\) & 120 ns . 3.69 & & & 74HCT08 ……..... 17 & 74HCT175 ............... 29 \\
\hline 74LS132 \(\quad . \quad 49 \quad 39\) & 74LS590........... 5.955 .85 & \({ }_{41256-150}\) 262, 144×1 & 150 ns - & S13052P. & \(\begin{array}{r}8.95 \\ \hline 9\end{array}\) &  & \begin{tabular}{l}
\(74 \mathrm{CCT240}\) \\
\(74 H C 144\) \\
\hline
\end{tabular} \\
\hline 74LS138........... 49 . 39 & 74LS688...... \(\quad\) 2.392.29 & \({ }^{412654.12} 544 \times 4\) & 120 V VIEO RAM ........... 10.95 & 6504 A & &  & 74HCT244 \\
\hline 74S/P & MS* & \begin{tabular}{ll}
41464.80 \\
\(41464-12\) & \(65.535 \times 4\) \\
\hline \(65.536 \times 4\)
\end{tabular} & 80ns
120 s . & 6510
6525 & 14.95 & \(7^{74 C T}\) T86.............. \(25^{2}\) &  \\
\hline & & 65.536x4 & 150ns & 6526 A & & 74HCT138................ 39 & 74HCT374 \(\quad\)\begin{tabular}{l} 
- \(\quad 39\) \\
\hline
\end{tabular} \\
\hline 74504 &  & \({ }_{1}^{262048.144 \times 1}\) & \begin{tabular}{l}
100 ns Staic Coumn . \\
80ns ( Meg) \\
\hline
\end{tabular} & 6545
6560 & \[
3.95
\] & LINE & AR \\
\hline \({ }_{7}^{74532}\) & \begin{tabular}{|c|}
745240 \\
745240
\end{tabular} & \(511000 \mathrm{P}-10 \quad 1048.576 \times 1\) & 100 ns (1 Meg) . 12.95 & 6567 & 24.95 &  & \begin{tabular}{llll} 
Part & No. & \(1-9\) & \(10+\) \\
\hline
\end{tabular} \\
\hline 74474
745112 &  & 514256 P . \(10 \quad 262.144 \times 4\) & 100号 (1 Meg) …….........1449 & & & & \\
\hline \({ }_{745124}^{74512}\) & \({ }_{7482888^{\circ}} \quad 1.49\) & 514258.10 \(262.144 \times 4\) & 100ns Static Column ._. 26.95 & 6581 (12V) & & TL071CP
TLO7CP & \begin{tabular}{lrr} 
DS14C88N & 1 & 1.19 \\
\hline 1.09 \\
L148N & 49 \\
\hline 159
\end{tabular} \\
\hline 745138 - - - - \(\quad . \quad .9\) & 745373 _- & & PROMS & 8502
8564 & & TL074CN . .-... 99.89 & DS 14C89N........1.19 1.09 \\
\hline \({ }_{745163}\) & \(745387 \times \ldots . .1 .1 .29\) & TMS2516 \(\quad\)\begin{tabular}{lll} 
204888 & \\
\hline
\end{tabular} & 450ns (25V) & 8566 & 6.95 & \begin{tabular}{lll} 
TLO81CP & .59 \\
T-082CP & .59 \\
\hline
\end{tabular} & LM1496N. \(\quad .69 .59\) \\
\hline 745174 & 745472. \({ }^{\text {7 }}\) &  & 450 ns (25V) & 8701 & \begin{tabular}{l}
9.95 \\
895 \\
\hline
\end{tabular} & TLO84CN \(\quad .9989\) & LM 1872 N . \\
\hline 74 S 175 & \(1{ }^{\circ}\) & TMS2532A 4096x8 45 &  & -82S 100 PLA . & 15.95 & \begin{tabular}{l|l|l} 
LM \(307 N\) \\
LM & \\
\hline
\end{tabular} & ULN2003A \(\quad . \quad 79.69\) \\
\hline CD-C & MOS &  & 450ns(25V) & 310654.05 & 9955 & LM309K ........ 1491.25 &  \\
\hline & & &  & \({ }_{901225.01}\) & 15.95 & LM310N \(\quad 1\)\begin{tabular}{l}
1.49 \\
\hline M3IN \\
\hline 1.25 \\
\hline
\end{tabular} & 266531........ 1.19 .99 \\
\hline CD4001............. 19 & \begin{tabular}{ll} 
CD4051 & \\
\(C\) C4052 & .59 \\
\hline
\end{tabular} & \(1024 \times 8\) &  & 901226-01. & 1595 & LM317T . &  \\
\hline C04007................... 19 & CD4053................... 59 & \({ }_{2046 \times 8} 20488\) &  & 901227-02 & 4.95 & LM318N \(\quad 1.09 .99\) & ULN2803A ........1.19 1.99 \\
\hline CO4011 … 19 & CD4060 - \(\quad . \quad . \quad . \quad\). &  & 450 ns [25VICMOS \(\quad 4.25\) & 90122703 & 15.95 & LM319N \(\quad 1.291 .19\) & LM2901N ......... 39.29 \\
\hline CO4012 \(\quad . \quad . \quad 29\) & CD4066 ….......... 29 & 2732 4096x8 45 & 450ns (25V) \(\cdots\) - & & & LM324N \(\quad . \quad 39 \quad 35\) & LM2907N \\
\hline CD4013 … \({ }^{\text {a }}\). 29 & C04069 - \(\quad 25\) & 2732 A 20 4096 \(\times 8\) 8 20 & 200ns 2iN MOS \(\quad 395\) & \(901486-06\) & 2.95 &  & \(\begin{array}{lllll}\text { LM2917N (8 PIn) } & 1.75 & 1.49 \\ \text { MC3470 }\end{array}\) \\
\hline CO4015
\(\mathrm{CD4016}\) & CD4070 &  & 450ns 2 25VCMOS . & & available & LM3362 ........1.09 199 &  \\
\hline CD4017........... 49 & CD4071. &  &  & ce: 325100p & \(=\mathrm{U17}\) (6 64) & LM337T \(\quad \begin{array}{r}1.291 .09 \\ \hline\end{array}\) & MC \(3486{ }^{\text {M }}\)......... 1.291 .19 \\
\hline CO 4018 … 49 & CD4073 &  & \begin{tabular}{l} 
250ns (12.5V) \\
\\
\\
\hline
\end{tabular} & & & LM338N &  \\
\hline C04020 & CD4081.................... 19 & 27 C64.15 8192x8 \(\quad 15\) & \(1500 n 5\) (12.5V) CMOS \(\quad 4.95\) & 74C/ & MOS & LF347N \(\quad 1.491 .25\) & LM3900N........49.45 \\
\hline CO4021 & CD4093 . & \(27128.20 \quad 16.384 \times 8\) - 20 & 200ns (21V) …………… 5.5 .95 & 74400025 & \(740174 \times 39\) & LM348N & LM3909N....... 89.79 \\
\hline CD4027................. 35 & CD4094 \(\quad . \quad .89\) &  & 250ns (21V) & \(74402 \quad 25\) & 740175. 39 & LF351N & LM3914N......... \(1.95{ }^{1.75}\) \\
\hline CD4028 - \(\quad . \quad 49\) &  & \({ }_{27128 A-20 ~ 16, ~}^{16384 \times 8}\) & 200 ns (12.5V) \(\quad \begin{aligned} & \text { V } \\ & \end{aligned}\) & \(74 C 04 . \quad 25\) & \(744192 \times .99\) & LFF56N …….... 89.79 & NE5532 \\
\hline CO4029
CD 4030 & CD4518................. \({ }^{5}\) & \(27 \mathrm{Cl} 28-25 \quad 16.388 \times 88\) & 250ns (21V)CMOS \(\ldots . . . . . . .595\) & \(74 C 08 . \quad . \quad 25\) & \(74 \mathrm{C} 194 . \quad .9\) & LF357N & 7805K \\
\hline  & CD4520 … 69 & \({ }^{27256-15}\) 32,766x8 15 &  & \(74.10 \quad .19\) & 74C221... 179 &  & 7812 K …......129 119 \\
\hline CD4042 ............ 49 & CD4522 \(\quad . \quad . \quad . \quad .75\) & \(\begin{array}{llll}272726.20 \\ 27256-25 & 32.768 \times 8 \\ 32.768 \times 8\end{array}\) & 200ns (12.5V)
250ns (12.5V & \(74 C 14 \quad 19\) & 74 [240. \(\quad 99\) & LM385Z12 & 7815K \(\quad 1.1 .29: 19\) \\
\hline CD4043 & CDA528
\(C 04538\) & \({ }_{27} 7256.15 \quad 32.768 \times 8\) & 150 SS 12.5 V CMOS & 74C32 \(\quad 45\) & \(74 C 244 \quad 149\) & LM386N-3 & \(7805 T\)
\(7812 T\) \\
\hline CD 4046
\(\mathrm{CO} 4047 \times \cdots \cdots \cdots\) & C04538
C04543 & \(27 C 256.25 \quad 32.768 \times 8\) & 250ns 125 VV CMOS \(\quad 5.4 .49\) & \(74674 \times \quad 19\) & \(74.3373 \quad 1.19\) & LM393N
L 398 N
- &  \\
\hline CO4049................... 29.25 & \begin{tabular}{l} 
CDO443 \\
CO4584 \\
\\
\hline
\end{tabular} & 27512.25
2755 & \begin{tabular}{l} 
2500ns 1125 V COS \\
\hline 15 \\
\hline
\end{tabular} &  & \begin{tabular}{ll}
\(74 C 374\) \\
740911 \\
\hline 1.49 \\
\hline
\end{tabular} &  & \({ }_{78108}^{7805}\). \\
\hline CD4050 & CD4585............ 69 & \begin{tabular}{llll}
\(C 512.15\) \\
\(C 512.25\) & \(65.536 \times 8\) & 15 \\
\(65.536 \times 8\) & \\
\hline 25
\end{tabular} & 150 S 12 SV CMOS
250ns (12.5V CMOS & 744665
\(74 C 89\) & \begin{tabular}{l}
740911. \\
74.9912 \\
\hline 7.95 \\
\hline
\end{tabular} &  &  \\
\hline NEC V20 \& & V30 CHIPS & \(72 \times 8\) & 150ns (12.5V CMOS (1 Meg) \(\quad 1995\) & 74490.98 & \(74 C 915 \quad 119\) & NRL555 \(\quad .75\) & 75113
75150 \\
\hline & & &  & 74C151...... 175 & \(74 C 917 \ldots .3 .95\) & LM565N.......... 49898 &  \\
\hline - mople increase its Spe & \%c and & & & \(74.154 \ldots \ldots\) & \begin{tabular}{l}
\(74 C 920\) \\
\hline 1.35
\end{tabular} & LM566CN ……..1.29 1.19 & 75174 …......... 2952.75 \\
\hline Panto. increase & dey up 1030\% Price & & PROMS & 7:C157 \(\quad 1.49\) & \(74.9921 . . .3 .955\) & LM567V _- . 75.65 & \begin{tabular}{ll}
75175 & 295 \\
75176 \\
\hline 545 \\
\hline
\end{tabular} \\
\hline UPD70108-5 (5MHz) V2 & 20 Chip ..................... 5.25 & \(2816 \mathrm{~A}-25\) 2048×8 250ns & (9V-15V) 5V Read/Write \(\quad 549\) &  & \begin{tabular}{l}
7449222 \\
740923 \\
\hline
\end{tabular} &  & 75176
75451 \\
\hline  & 20 Chip.......................10.95 10.95 & 2817 A 2048x8 350ns & 5 V Read Wrte. & \[
\begin{array}{ll}
74 \mathrm{C} 161 \ldots & 49 \\
74 \mathrm{C} 162 & \\
\hline
\end{array}
\] &  &  & 75451
75452 \\
\hline UPD70116-8 (8MHz) \({ }^{\text {U }}\) & 30 Chip........................ 10.95 & 2864A \({ }^{\text {81920 }}\) 819250ns & 5V Read/Write (Pin ) , vo Reib) 10.95 & & & LM1458N & 75492 …… 89.79 \\
\hline UPD70116-10 ( 10 MHz ) & V30 Chip.................. 13.49 & 2865A 8192x8 250ns & 5V Read/Write.............. 1095 & & & LM1488N......... 49 . 45 & MC145406P ..... 2.95 2.75 \\
\hline
\end{tabular}

PARTIAL LISTING • OVER 4000 COMPONENTS AND ACCESSORIES IN STOCK! • CALL FOR QUANTITY DISCOUNTS

\section*{Now Available...Jameco's NEW 1990 Catalog with 80 pages of Computer Peripherals, Components \& More!}



Metex Digital Multimeters Metex General Specs:
- Handheld, high accuracy Current, Resistance, Diodes, Continuty, Transistor hFE - Manual ranging wioverioad protection M3650, \(3650 B\) \& M4650 oniy:
- Also measure frequency and capacitance M4650 only: • Data Hold Switch • 4.5 Digit M3610 35 Digit Mutimeter ................ \(\$ 49.95\) M3650 3.5 Digt Mutimeter w/Frequency \& Capacitance......................... \(\$ 69.95\) M3650B Same as M3650 w/Bargraph..................95 M4650 4.5 Digitw/Frequency. Capacilance and Data Hold Swich................... \(\$ 99.95\)


\section*{Prototype Design Stations}

WM2

WM1 \& WM2 Features: • Removable solderless bread board - Variable and fixed DC power supply - Multifrequency signal generator - Analog multimetes - 8 bicol or LEDs (red \& green) - 8 logic switches - Logic probe Lighted power switch . Fuse overload protected Sturdy ruggedized case
WM1 Special Features: • 4 potentiometers - Built-in speaker
WM2 Special Features: - Pulse Generator - Binary coded decimal (BCD) to 7 -segment decoder/driver - DB25 connector - Frequency counter ( 1 Hz to 1 MHz )

WM1 Analog Prototype Station .... \$199.95 WM2 Digital Prototype Station ..... \$249.95

\begin{tabular}{|c|}
\hline \begin{tabular}{l}
IBM PC/XT/AT \\
Compatible Keyboards
\end{tabular} \\
\hline  \\
\hline JE1016 101-Key Enhanced Layout with 12 Function Keys ..... \(\$ 69.95\) \\
\hline JE2016 111-Key Enhanced with Solar Powered Calculator........ \(\$ 79.95\) \\
\hline JE2017 104-Key Enhanced with Trachbal (Microsoft Compatible) .... \(\$ 99.95\) \\
\hline
\end{tabular}

\section*{3.5' and 5.25' \\ Floppy Disk Drives}


\section*{Sony}

MPF11 \(3.5^{\circ}\) т20кb internal Drve .... \(\$ 69,95\) SMK 5.25" Installation Kit w/Faceplate .. \(\$ 14.95\)

\section*{Toshiba}

356KU \(3.5^{" 1} 4.44 \mathrm{Mb}\) Internal Drive \(\$ 109,95\) TEAC
FD55B 5.25" 360Kb Haif Ht. ........ \$99,95 FD55G \(5.5^{\prime \prime} \mid 2 \mathrm{Mb}\) Half \(\mathrm{Ht} \ldots . . \$ 119.95\) Jameco
JE1020 \(5.255^{\prime \prime}\) 360kb Half Ht. Black \(\$ 89.95\) JE1021 5.25 " 360 Kb Half Ht. Gray \(\$ 89,95\) JE1022 5.25 " 1.2 Mb Half H: Gray \(\$ 99.95\)

EPP. eiement
XY960

XY999

A.R.T. EPROM Programmer

Programs all current EPROMs in the 2716 to 27512 range plus the X 2864 EEPROM • RS232 port • Software incl.
\$179.95

\section*{Soldering and Desoldering Stations}

60 Watt Analog Display Soldering Station • Electronic temperature control from \(200^{\circ}\) to \(878^{\circ} \mathrm{F}\). Cartridge heating element for a longer life of the soldering tip
XY1683
\(\$ 59.95\)
60 Watt Anaiog Display Soldering Station . Electronic temperature control from \(200^{\circ}\) to \(878^{\circ} \mathrm{F}\). Ceramic heatirg element for a steady temperature and long life
XY2660 \(\qquad\) control from \(200^{\circ}\) to \(878^{\circ} \mathrm{F}\). Temperaturectionic temperature 5 \(560^{\prime \prime} \mathrm{H}\) 3
\(\$ 99.95\)
30 Watt Electronic Temperature Controlled Desoldering Station - Electronic temperature control from \(212^{\circ}\) to \(842^{\circ} \mathrm{F}\). Selfcontained high rotary vacuum pump
\(\$ 279.95\)


Hard \& Hard/Floppy Disk Controller Cards
\begin{tabular}{|c|c|c|c|c|}
\hline & MFM Hard & rll Hard & mpm Hardfloppy & RLL HardFloppy \\
\hline Computer Type & Part No. / Price & Fart No. / Price & Part No./ Price & Part No./ Price \\
\hline 8088 (PCAX) @ 3:1Interleave & XTGEN/77995 & 1004A27X 589.95 & JE1044/509.95 & .-........... \\
\hline 80236 (AT)/336 @ 2:1 1 ntererleave & 1003vMM 7 \$129.95 & T003VSP1/3148.95 & c09VMM2 \(\$ 14995\) & 1003VSA2\$169 95 \\
\hline 80286 (AT)386@ 1:1 Interieave & 1006VMM1:5149.95 & 1306VSA1/3169.95 & 006VMM25169 95 & 1006VSR2\$189 \\
\hline
\end{tabular}


\section*{\(1 / 1\) 1-800-344-4539}


\title{
*QUALITY PARTS *DISCOUNT PRICES *FAST SHIPPING ALL ELECTRONICS CORP
}

\section*{12 VOLT DC MINI FAN}

\section*{Howard industiress}

3-15-810. Operates on \(12 \mathrm{Vdc}, 0.10 \mathrm{amp}, 1.0 \mathrm{wath}\) Compact plastic housing, 9 blade lan. Two \(9^{\circ}\) pigtail leads. CAT\# CF-121 \$9.00 each
115 VAC COOLING FAN STANDARD SIZE
COOLING FAN.
Features die cast metal housing for strength and durability. MPEDANCE PROTECTED
\(411 / 16^{\circ}\) square \(X 11 / 2\) deep.
Factory new 120 Vac lans. CF1-N \(\$ 9.50\) each

LED CHASER KITI


Build this variable speed led chaser. 10 leds flash sequentialy at whatever speed you set them for. Easy to build kit includes pc board, parts and instructions. ldeal for special lighting e fects, costumes, etc. Operates on 3 to 9 vots. PC board is \(5^{\circ} \times 2.25^{\circ}\). A great one hour project. CAT" AEC \(\$ 6.50\) each

\section*{STEPPER MOTOR}

Airpax\# A82743-M4
Brand new 12 volt dc stepper motor. 35 ohm coil. 7.5 degrees per step. 2.25" diameter, \(0.93^{\prime \prime}\) long excluding shaft. \(0.2^{\prime \prime}\) dia. shaft is \(0.75^{*}\) long. 2 hole mounting flange, \(2.675^{n}\) mounting centers. 6 wire leads.

CAT\# SMT-5 \$10.00 each

RECHARGEABLE BATTERY PACK (USED)
Four AA nickel cadmium batteries connected in series to make a 4.8 volt pack. Batteries are in a \(2 \times 2\) configuration with a 2 pin connector attached. The four batteries can be separated into single AA size solder tab nickel cadmium batteries or resoldered into other configurations.

SPECIAL SALE PRICE NOW
\(\$ 3.00\) per pack \(\cdot 10\) packs for \(\$ 25.00\) CAT\# NCB-41AAU

TIL-99 PHOTO TRANSISTOR TO-18 cate whth window. For wide anglo viewing apcicantions. Soedraly and mectianicalty compar
 S1.00 aach - 10 hor 89.00
TIL-31B PHOTO DIODE
TO. 18 caso with wnidow. Infrarad eminiling photo diode. CATA TLL-318 \(\$ 1.00\) eas - 10 100 \(\$ 9.50\)

\section*{SWITCHES}

ITT PUSH BUTTON
ITT MOPL series. \(3 / 4^{-}\)
1/2 grey rectangula
key cap. S.P ST
Push to dose. AATED: 0.1 amp switching.
0.25 amp сату current. P.C. mount

CAT: PB-8 658 each - 10 for \(\$ 6.00\) 100 for \(\$ 50.00\)

SPDT PUSHBUTTON Marquard 1843
Raved 6 amps \(@ 125 / 250 \mathrm{Vac}\). Black plastic pushoutton.
Swith booy: \(92^{-7} \times .94^{-} \times .65^{\circ}\)
CATAPB-18 \(\$ 1.65\) ea. \(\cdot 10\) for \(\$ 1.50\) each
PUSHBUTTON SWITCH
GCThomsen* \(35-420\)
S.P.S.T. normally open momentary pushbution switch. Red plastic actuator 0.57 diameter. Chrome bezel \(0.68^{\prime \prime}\) diameter. Threaded bushing mounts in \(.50^{\circ}\) diameter hote. Rater 3 amp @ 250 Vac . Solder boop terminals. CATI PB-20 \(\$ 1.00\) each

MINIATURE TOGGLE
SWITCH
S.P.D.T. (ONON)

Rated: 5 amp @
120 Vac. Solder lug terminals. CATA MTS-4 \(\$ 1.35\) each
10 for \(\$ 12.50\) - 100 for \(\$ 110.00\)

\section*{WALL TRANSFORMERS}


ALL PLUG
ORECTY ORECTLY
NTO NTO
120 VAC 12O VAC
OURLET 12 vac 9500 me caTe DCTX-12s \(\$ 4.50\) \(6 \mathrm{Vdc}(\underset{\mathrm{C}}{200} \mathrm{ma}\) CATH DCTX- \(-280 \$ 2.25\) \(9 \mathrm{Vdc}(11\) art CAT DCXT-05: \(\$ 5.00\)
24 VaC © 825 ma . CATM ACTX-2482 \(\$ 3.25\)

\section*{NICKEL-CAD} BATTERIES
(RECHARGEAELE)

\section*{}

AMA SIIE \(\$ 1.50\) each 1.2 voks 180 mah CATE NCB-AAA M SIIE \(\$ 2.00\) each 1.25 worts 500 mAh CATH NCB.AA A SIZE \(\$ 2.20\) each WITH SOLDER TABS CATH HCE-SAA CSIZE SH2S asch CSIZE SA. 25 bach 1.2 wohs 1200 mah OSIIE \$4.50 each 1.2 wolts 1200 mAh CATO HCB-D

PHOTO FLASH CAPACITOR
Rubycon* FKX
203 mfd .330 volts
\(0 . 亡 9\) " diameter \(\times 1.11\) " high
Sarder loop terminals.
CAT\# PPC-200 \$3.25 each
1 C for \(\$ 30.00 \cdot 100\) for \(\$ 275.00\)

\section*{XENON TUBE \(\mathrm{FB}=\mathrm{F}\)}
long flashtube whit \(31 / 1 / \mathrm{rec}\) and black leads. doeal or CAT: FLT-3 2 for 31.00

\section*{\%RELAYS}

5-6 VDC SIP
REED RELAY

\section*{Electrod}

\section*{-Blue Boy: BESIAOSA10}

5-6 Vdc, 500 ohm coll.S.P.S.
normally open reed relay. 0.5 anp contacts. SIP conflguration. \(1^{\circ} \times .375^{\circ} \times .3^{3}\).
\(\$ 1.10\) ach - 10 for \(\$ 10.00\) 5 VDC LATCHING RELAY Aromets RSL2D-5V Miniature SPOT
dual coit leatchin dual corl heoc
relay. 5 Voc
relay. 5 Voc
170 ohm coll 170 ohm colls. 1 anp. TTh com patble. Ut and CSA rec
\(0.787 \times 0.394^{-} \times 0.394\)

\section*{CATH LRLY 5 DC \(\$ 2.50\)} 12 VOLT D.C. COIL S.P.D.T. Omfons G2E-184P
4 amp contacas. 335 ohm coil. Sugar cube stze. \(.61^{\circ} \times .42^{2} \times .44^{-}\)high.P.C. mount with pins on DIP spacing. \begin{tabular}{ll} 
CATE RLY-787 \\
\hline
\end{tabular}

\section*{ \\ 0.30 MINUTE AUTO. Senkyo Seike Mig. TMCF3SMYB9 10 Vac 60 hz .10 amp contacts. Ul rated. Turn shaft to turn on Bell rings and circuit breaks atter specified anount of time. Ideal for any device that need benind face plate. \(1 / 4^{*}\) hall-round shaht. C4T\# TMC-30 \$3.00 each}

22144 PIN CONNECTOR

\section*{}
. \(156^{\prime \prime}\) pin spacing, \(0.200^{\circ}\) beween double rows, gold contacts, P.C. mounting. SDECIAL. Same as AMP\# 2-530655-6. CATH EBC-1G \(\$ 1.00\) each - 10 for \(\$ 8.00\) erates on 6 Vdc . 8 digit apha-numeric readoun. 45 buttor keypad, 14 transistors. 2 I.C.s. 1 phazo evement and oczer goodies. Top and botton row of keypad butions


CATA ST-4 \(\$ 1.75\) each 10 for \(\$ 15.00\)
TEEEPHONE COUPLINO TRANSFORMER Mul Products inter
Prinary: 600 ohm Primary: 600 ohm
Secondary: 6006600 ohm \(0.7^{-} \times 0.61^{-} \times 0.65^{\mathrm{high}}\). \(6 \mathrm{D}=\mathrm{pine}\) on 0.187 conters
Primary inductince Primary Inductance: 300 mH min
CAT TCTX-1 \(\$ 1.25\) each



\section*{10 AMP SOLID} STATE RELAY ELECT
S2178

\section*{CONTRO}

Rated 5.5 to 10 Vdc bly (will operate on \(3-32 \mathrm{Vdc}\) ). LOAO: 10 amp 9240 Vac \(21 / 4^{-} \times 13 / 4^{-} \times 7 / 8^{\circ}\). CATE SSRLY-10B \(\$ 8.50\) ea olanity DISCOLNT 50 tor \(385.00 \cdot 25\) tor \(\$ 175.00\) OPTO.SENSOR
\(\begin{aligned} & \text { U z maped package } \\ & \text { with mounting ears. } \\ & 1 / 8 \cdot \text { opening. } \\ & \text { 3/4 mounting ears. } \\ & \text { CATa OSU- } 50 \mathrm{c} \text { each } \\ & 10 \text { tor } \$ 4.50=100 \text { tor } \$ 40.00\end{aligned}\)

\section*{A.C. LINE CORDS} Black 8t., 18/2. SPT-2 \(=010=\) non polarized plug CAT LCAC 2 for \(\$ 1.00\) 100 for \(\$ 45.00\)
polarized plug CATH LCP-1 GOC 日ach 100 lor \(\$ 50.00\)
L.E.D. FLASHER KIT Two L.E.D.'s flash in
unison when a 9 voth bettery is attacheo. This kit includes a p.c. board, all the

parts and instructions to make a simple flasher cr cult. A quick and easy profect for anyone whth bas soldering sidiss. CATa LEDKIT \(\$ 1.75\) per kt

\section*{LOOK WHAT \$1.00 WILL BUY}

200 ASSORTED Nam 1/4 WATT RESISTORS Bent heads, carton comp. and carbon film. CATH GRES 31.00 per assortment

200 ASSORTED U
\(1 / 2\) WATT RESISTORS CTOBent leads, catben comp. and film. CATH GAABRE \(\quad \$ 1.00\) per assorment

\section*{50 ASSORTED}
disc capacitors \(\Pi \quad \Pi\) Most are cut (p.c. leads). Some to 500 volts. CATI GRABDC \(\$ 1.00\) per assortment

15 VALUES OF
ELECTROLYTICS
Contains both axial and
radlal styles from 1 mid .
CATH GRABCP \(\$ 1.00\) per assortment
10OK WHAT \$2.00
WILL BUY
15 AMP SNAP-ACTION SWITCH
5 preces of a 15 amp
125.250 Vac normally
con swtch. Booy 1 :
\(134^{\circ} \times 588^{-} \times 5 / 8\).
Button extends \(3 / 16^{\circ}\) abowe 8 witch body
CATH GRABMS \(\$ 2.00\) per package
TO-92 TRANSISTORS
20 assorted TO-92 plastic case tansistors. Varlous styles of NPN and PNP. Some house marked, some standard marking. CAII GRTRN \(\$ 2.00\) per assortment


CALL OR WRITE
for OUR FREE 60 PAGE CATALOG OVER 4000 PARTS!


OUTSIDE THE U.S.A.
END \(\$ 2.00\) POSTAGE FOR A CATALOGII

ORDER TOLL FREE
1-800-826-5432
IMAIL ORDERS TO: ALL ELECTRONICS
P.O. BOX 567

VAN NUYS, CA 91408

INFO: (818)904-0524
FAX: (818)781-2653 MINIMUM ORDER \(\$ 10.00\) QUANTITIES LIMITED CALIF. ADD SALES TAX USA: \(\$ 3.50\) SHIPPING FOREIGN ORDERS INCLUDE SUFFICIENT SHIPPING. NO C.O.D.

\section*{MATH COPROCESSORS satromacess soas intly stat
 16-BIT COPROCESSORS \(\begin{array}{lll}80287 & 6 \mathrm{MHz} & 139.95 \\ 80287.8 & 8 \mathrm{MHz} & 209.95\end{array}\) \(\begin{array}{lll}80287.8 & 8 \mathrm{MHz} & 209.95 \\ 80287.10 & 10 \mathrm{MHz} & 239.95\end{array}\) \(\begin{array}{lll}80287-10 & 10 \mathrm{MHz} & 239.95 \\ 80 \mathrm{C} 287 & 12 \mathrm{MHz} & 299.95\end{array}\) 32-BIT COPROCESSORS \(\begin{array}{llll}80387-16 & 16 \mathrm{MHz} & 359.95 \\ 80387-\mathrm{SX} & 16 \mathrm{MHz} & 319.95\end{array}\)}

DYNAMIC RAMS
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{4}{|l|}{DYNAMIC RAMS \%huess} \\
\hline PART\# & stze & SPEEd & PINS & PRICE \\
\hline 4164-150 & 65536x1 & \(150 n \mathrm{~s}\) & 16 & 2.49 \\
\hline 4164-120 & 65536x1 & 120 ns & 16 & 2.89 \\
\hline 4164-100 & 65536x1 & 100 ns & 16 & 3.39 \\
\hline TMS4464-15 & 65536x4 & 150 ns & 16 & 3.59 \\
\hline TMS4464-12 & \(65536 \times 4\) & 120 ns & 16 & 3.95 \\
\hline TMS4464-10 & \(65536 \times 4\) & 100 ns & 16 & 4.95 \\
\hline 41256-150 & 262144×1 & 150ns & 16 & 2.59 \\
\hline 41256-120 & \(262144 \times 1\) & 120 ns & 16 & 2.95 \\
\hline 41256-700 & \(262144 \times 1\) & 100ns & 16 & 3.15 \\
\hline 41256-80 & \(262144 \times 1\) & 80 ns & 16 & 3.75 \\
\hline 41256-60 & \(262144 \times 1\) & 60 ns & 16 & 5.25 \\
\hline 414256-100 & \(262144 \times 4\) & 100 ns & 20 & 12.95 \\
\hline 414256-80 & \(262144 \times 4\) & 80 ns & 20 & 13.45 \\
\hline 1 ME-120 & 1048576×1 & 120 ns & 18 & 11.95 \\
\hline 1 MB-100 & 1048576x1 & foons & 18 & 12.35 \\
\hline \(1 \mathrm{ME}-80\) & 1048576x1 & 80ns & 18 & 12.95 \\
\hline \multicolumn{5}{|r|}{SIMM/SIP MODULES 3 Prices} \\
\hline Part\# & SIzE & speed & TYPE & atnee \\
\hline 41256A9B-12 & \(256 \mathrm{~K} \times 9\) & 120 ns & SIMMPC & 36.95 \\
\hline 41256A9B-80 & 256K \(\times 9\) & 80 ns & SIMMIPC & 49.95 \\
\hline 421000 ABE-10 & \(1 \mathrm{MEx} \times\) & 100 ns & SIMMMAC & 109.95 \\
\hline 421000A9B-10 & \(1 \mathrm{MB} \times 9\) & 100 ns & SIMMPC & 113.95 \\
\hline 421000A9B-80 & \(1 \mathrm{ME} \times 9\) & 80ns & SIMMPC & 119.95 \\
\hline \(256 \mathrm{k} \times 9 \mathrm{SIP}-80\) & \(256 \mathrm{~K} \times 9\) & B0ns & SIPPPC & 54.95 \\
\hline \(256 \mathrm{~K} \times 9 \mathrm{SIP}-60\) & \(256 \mathrm{~K} \times 9\) & 60 s & SIPPPC & 64.95 \\
\hline \(1 \mathrm{MBX9SIP}\)-80 & \(1 \mathrm{MB} \times 9\) & 80 ns & SIP/PC & 124.95 \\
\hline \multicolumn{5}{|c|}{STATIC RAMS} \\
\hline PART* & SIZE & Speed & PINS & PARCE \\
\hline HM6116LP. 2 & 2048×8 & 120 ns & 24 & 5.49 \\
\hline HM6264LP-15 & 8192x8 & 150ns & 28 & 4.95 \\
\hline HM6264LP-12 & 8192x8 & 120 ns & 28 & 6.49 \\
\hline HM43256LP-12 & \(32768 \times 8\) & 120ns & 28 & 14.95 \\
\hline HM43256LP-10 & \(32768 \times 8\) & 100ns & 28 & 15.95 \\
\hline
\end{tabular}
-

\section*{EPROMS}

\section*{}


\section*{PROTOTYPE CARDS}
FR-4 EPOXY GLASS LAMINATE WITH GOLD PLATED


JDR-PR1
 ABOVE WITH GROUND PLANE JDR-PR2-PK PARTS KIT FOR JDR-PRZ ABOVE FOR AT
JDA-PR10 BIT WITH I/ DECODING LAYOUT ........ 34.95 JDR.PR10-PK PARTSKIT FOR JDR-PR10 ABOVE ....... 12.95 FOR PS/2
 JDR.PR16-PK PARTS KIT FOR JDR-PR16 ABOVE ........ 15.95 JOR-PR16V 16 BIT FOR VIDEO APPLICATIONS ...... 39.95 EXTENDER CARDS
SIMPLIFY PROTOTYPING AND TESTING
EXT-8088 8.EIT FOR 8088 MOTHERBOARDS ...... 29.95 \(\begin{array}{ll}\text { EXT-80286 } & \text { 16-BIT FOR 286/386 MOTHERBOAROS . } 39.95 \\ \text { EXT-16 } & \text { MICROCHANNEL } 16-\text { BIT }\end{array}\) \(\begin{array}{ll}\text { EXT-16 MICROCHANNEL 16-BIT } \\ \text { EXT-32 } & \text { MICROCHANNEL 32-BIT }\end{array}\) \begin{tabular}{l}
69.95 \\
\hline 9.95
\end{tabular}
PC BREADBOARD-ON-A-CARD

62 bus lines USE UP TO 24 14-PINICS 1940 TIE POINTS DB25 D-SUB CONNECT PDS-604 .......... \(\$ 49.95\)

\section*{SOLDER STATION}
UL APPROVED
ADJUSTABLE HEAT SETTING
meplacement rip @
168-3C

IC SOCKETS/DIP CONNECTORS

CABLES AND GENDER CHANGERS
MOLDED; GOLD-PLATED CONTACTS; 100\% SHIELDED

CBL-PRNTER
CBL-PRNTR-RA
CBL-DB25-MM
CBL-DB25-MF
CBL-9-SERIAL
CBL-KBD-EXT
CBL-CNT-MM
CBL-FDC-EXT
CBL-FDC-EX
CBL-MNT-9
CBL-MNT-9
CBL-MNT-15
CBL-MODEM
GENDER-VGA
GENDER-9-25

CBL.PRNTR-25 25 FI. PC PRINTER CABLE
25 FT PC PRINTER CABLE
RB25 MALE-DB25 MALE CATT D825 MALE-DB25 MALE 6 FT.
DE25 MALE-DB25 FEMALE 6 FT DB9 FEMALE-DB25 MALE 6 FT. 36. \({ }^{\text {PIN CIN CENTRONICS }}\)-MM 37-PIN EXT. FLOPPY CABLE 9-PIN MONITOR EXTENSION 15.PIN MONITOR EXTENSION CABU......95 MODEM-DB25 DB25 FEMALE ... \(\quad 6.95\) DB9.0B15 ADAPTOR
DB9-DB25 SERIAL ADAPTOR

\section*{PARTIAL LISTINGS ONLY-GALL FOR FREE 100-PG CATALOG!}


\section*{2400 BAUD MODEM \(\$ 89^{95}\)}

2400/1200/300 BAUD
FULL HAYES COMPATIBILITY CONFIGURE AS COM1, COM2, COM3
 OR COM 4 - BUILT-IN SPEAKER. AUTO WAIT-FOR-DIAL TONE AND AUTO-REDIAL - PROCOMM
COMMUNICATIONS SOFTWARE . MADE IN THE USA MCT-24I
MCT-121 1200 BAUD INTERNAL MODEM

\section*{MINI UPRIGHT CASE}
\(\$ 199^{95}\) 8088 OR MIN 2851 NOTHEREOARDS - ROOM FOR 6 EXPANSION CARDS HOLDS 35 1/4 \& \(13-1 / 2\) DRIVES ( \(1 / 2 \mathrm{HT}\) ) 200 WATT POWER SUPPLY
2-DIGIT LED SPEED
\(12^{n} H \times 16^{\prime \prime} L \times 8^{\prime \prime} W\)
CASE-120

\section*{UPRIGHT CASE \\ \(\$ 249^{95}\)}

SPACE SAVING DESIGN HOLDS
ALL SIZES OF MOTHERBOARDS
AND INCLUDES: - \(250 W\) POWER SUPPLY AND INCLUDES: - \(250 W\) POWER SUPPLY
- MOUNTS FOR 3 FLOPPY \(\& 4\) HARD DRIVES - TURBO \& RESET SWITCH • LED SPEED DISPLAY - POWER \& DISK LED'S CASE-100
CASE-FLIP FOR 8088 MB'S ........... \(\$ 39.95\) \(\begin{array}{ll}\text { CASE-SLIDE FOR } 8088 \text { MB'S ............ } \$ 39.95 \\ \text { CASE-70 } & \text { FOR } 286 \text { MB'S }\end{array}\) \(\begin{array}{lll}\text { CASE-70 } & \text { FOR } 286 \text { MB'S ........... } \$ 89.95 \\ \text { CASE-50 } & \text { FOR MINI } 286 \text { MB'S } \\ \$ 59.95\end{array}\) CASE-50 FOR MINI 286 MB'S ..... \(\$ 59.95\)

\section*{MODULAR PROGRAMMING SYSTEM}

MODULES USE A COMMON HOST ADAPTOR CARD-1 SLOT PROGRAMS EPROMS, PROMS, PALS, MORE!
HOSTADAPTOR CARD \$29.95 PROGRAMMING MOOULES! - SELECTABLE ADDRESSES
PREVENTS CONFLCTS PREVENTS CONFLI MOD-MAC

\section*{UNIVERSAL}

MODULE


8748 \& 8751 SERROMS, EEPROMS, PALS, BI-POLAR PROMS. ARRAY LOGIC)FROM LATICS; 16 V8 AND 20 V 8 GALS (GENERIC DYNAMIC \& STATIC RAMS - LOAD DISK, SAVE DISK, EDIT, BLANK CHECK. PROGRAM, AUTO, READ MASTER, VERIFY AND COMPARE
MOD-MUP
EPROM MODULE

\section*{\(\$ 119.95\)}
- PROGRAMS 24-32 PIN EPROMS. CMOS EPROMS \& EEPROMS FROM 16 K TO 1024 K . HEX TO OBJ CONVERTER - AUTO,
BLANK CHECK/PROGRAMNERIFY • VPP 5, 12.5 12.75. 13.21 BLANK CHECK/PROGRAMNERIFY - VPP 5, 12.5 12.75. 13. 21
\(\& 25\) VOLTS. NORMAL, INTELLIGENT, INTERACTIVE \& QUICK PULSE PROGRAMMING ALGORITHMS
MOD-MEP
MOD-MEP-4 4-EPROM PROGRAMMER
MOD-MEP-8 8-EPROM PROGRAMMER

\section*{OTHER MODULES}

MOD-MPL PAL MODULE
MOD-MIC DIGITAL TESTER MODULE
MOD-MBP BI-POLAR PROGRAMMING MODULE
MOD-MBP BI-POLAR PROGRAMMING MODULE
MOD-MMP MICROPROCESSOR PROG. MODULE
MOD-MMP MICROPROCESSOR PRO
MOD-MPL-SOFT CUPL SOFTWARE
\(\$ 169.95\)
\(\$ 259.95\)
\(\$ 499.95\)
\(\$ 249.95\)
\(\$ 129.95\)
\(\$ 259.95\)
\(\$ 179.95\)
\(\$ 99.95\)

VALUE-PRICED TEST EQUIPMENT ALL WITH A 2 YEAR WARRANTY!


35 MHZ DUAL TRACE
OSCILLOSCOPE
\$499 \({ }^{95}\)
- wide band width . variable holdoff

MODEL-3500 (SHOWN)
20 MHZ DUAL TRACE OSCILLOSCOPE \({ }^{\mathbf{3}} \mathbf{3 8 9 . 9 5}\) - TV SYNC FILTER - COMPONENTS TESTER

MODEL 2000
THE ULTMMATE
3.5 DIGIT DMM \(\quad \$ 79^{95}\)
- BASIC DC ACCURACY \(\pm 0.25 \%\)

34 Ranges
- TEMP, TRANSISTOR \& RESISTANCE
features
DMM-300 (SHOWN)
3.5 DIGIT

FULL FUNCTION DMM *49.95
- BASIC DC ACCURACY \(\pm 0.25 \%\)
- 22 Ranges

3.5 DIGIT POCKET SIZE DMM "29.95
- BASIC DC ACCuRaCY \(\pm 0.5 \%\) • 14 RANGES DMM-100
3.5 DIGIT PROBE TYPE DMM
\(\$ 54^{95}\)
- AUTORANGING
- AC/OC 2V-500V,
- RESISTANCE: \(2 K-2 \mathrm{M}\)-4 4 wn

DPM-1000 (SHOWN)
E 17.95
hIGH/LOW LOGIC PROBE 17.95
- MEMORY FUNCTION FREEZES DATA FOR LATER USE LP-2800
PULSER PROBE FOR QUick DEBUGGing \({ }^{\text {s }} 19.95\)
- INJECTS PULSE INTO TEST CIRCUIT-VARIABLE WIDTH - TTL, OTL, TRL, HTL, HINLL, MOS, \& CMOS COMPATIBLE LP-540


\section*{JIM'S BARGAIN HUNTERS CORNER}

\section*{DFI \\ 400 DPI \\ HANDY SCANNER 3000+}
-QUICKLY SCANS IMAGES UP TO 4.1" WIDE
-100. \(200,300 \& 400\) DPI IN BOTH DIRECTIONS
- 3 \& W AND 3 HALF-TONE MODES
- 32 Levels of GRay Scale
- HERCULES, CGA, EGA AND VGA COMPATIBLE
- INCLUDES INTERFACE CARD
- INCLUDES PC PAINTBRUSH SOFTWARE TO PAINT,

ROTATE, FLIP, SHRINK, EXPAND, TLLIT, INVERT AND
aEd text to your images
- IMAGE EDITOR UTILITY PERMITS \(90^{\circ}\) ROTATION AND

ABILLTY TO SAVE IN WINDOWS, GEM. HALO AND PC
PAINTBRUSH FORMATS
- IMAGE TOOLS TO ALLOW MERGING OF GRAPHICS WITH OTHER APPLICATIONS
HS-3000 WAS \(\$ 199.95\)

\section*{ORDER TOLLFRIEE} 800-538-5000

\section*{LOCAL (408) 559-1200 CUSTOMER SERVICE 800-538-5001} TECH SUPPORT 800-538-5002 FAX (408) 559-0250

\section*{ADVERTISING INDEX}

RADIO-ELECTRONICS does not assume any responsibility for errors that may appear in the index below.
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Free Information Number} & Page & & NRI Schools & 3. 11 \\
\hline 108 & AMC Sales & 20 & 190,191 & Optoelectronics & . 12,85 \\
\hline 75 & Ace Products & 30 & - & Pacific Cable & 81 \\
\hline 107 & All Electronics & 93 & 56 & Parts Express & 88 \\
\hline - & Amazing Concepts & 85 & - & People's College of & Study . 25 \\
\hline 84 & Appliance Service & . 30 & 78 & Radio Shack & 7 \\
\hline 67 & Banner Technical Books & 24 & 197,198 & SCO Electronics & . 69 \\
\hline 109 & C \& S Sales & . 15 & 183 & Sequoia Publishing & 30 \\
\hline 70 & CEI & . 80 & 176,177 & Sencore & CV4. 23 \\
\hline - & CIE & 29,19 & 74 & Solid State Sales & . 86 \\
\hline 200 & Cable Network & . 89 & - & Star Circuits & 26 \\
\hline 50 & Caig Laboratories & 24 & 195 & TECI & . 70 \\
\hline 192 & Chenesko Products. & . 30 & 194 & Tentel & . 61 \\
\hline - & Command Productions & 61 & 186 & Unicorn & 82 \\
\hline 55 & Contact East & 30 & 198 & U.S. Cable TV & . . 69 \\
\hline 58 & Cook's Institute & . 66 & 64 & Video-Link & 84 \\
\hline 187 & D\&D Electronics & 67 & 184 & Viejo Publications & 67 \\
\hline - & Damark International & CV3 & 185 & WPT Publications & 70 \\
\hline
\end{tabular}

82 Digi-Key . . . . . . . . . . . . . . . . . . . . 92
180 Electronic Goldmine . . . . . . . . . . 87
- Electronics Book Club . . . . . . . . . 62
- Electronic Tech. Today . . . . . . . . . 69

121 Fluke Manufacturing . . . . . . . . CV2
193 Global Specialties . . . . . . . . . . . . . . 5
- Grantham College ............... 41

86 Heathkit .......................... 21
188,189 ICS . . . . . . . . . . . . . . . . . . 20, 69
- Information Unlimited . . . . . . . . . 88

181 International Components Corp . 89
I13,170 JDR Microdevices . ...... 94, 95, 96
114 Jameco . . . . . . . . . . . . . . . . . . 90-91
115 Jensen Tools . . . . . . . . . . . . . . . . . . 30
182 Jinco Computers . . . . . . . . . . . . . 83
- King Wholesale .................. . . 80
- LEARN . . . . . . . . . . . . . . . . . . 13

87 MCM Electronics . . . . . . . . . . . 83
53 MD Electronics . . . . . . . . . . . . . . . 86
93 Mark V. Electronics. . . . . . . . . . . . 87
- McGraw Hill Book Club . . . . . . . . 44

61 Microprocessors UnItd. . . . . . . . . . 78
117 Mouser . . . . . . . . . . . . . . . . . . . . . . . 66
199 Movie Time . . . . . . . . . . . . . . . . . . 16
26

\title{
DAMARK \\ INTERNATIONA
}

\section*{ORDER TODAY!! 1-800-729-9000}

THE"GREAT DEAL"CATALOG

\section*{PACKARD BELI}

PACKMATE 286 COMPUTER W/ VGA COLOR MONITOR
- 80286 micro-
processor (operates
at 12 MHz ).
- One 3-1/2" 1.44 MB
floppy drive.
- One 5-1/4" 1
floppy drive.
- 30 MB hard drive
- 1 MB RAM on
motherboard
expandable to 3 MB .
- Inciudes VGA 14"
color monitor and
VGA card. - IBM compatible. AT compatible - 8 expansion slots. - Dual FDD/HDD controller
- 2 hall height drive cavities exposed.
- I half height drive cavity enclosed. \(\cdot 2\) serial ports.
- 1 parallel port. - 101 key keyboard.
- System contiguration in CMOS with battery back-up.
- Includes MS DOS 3.3
and GW BASIC
- 145W Universal power
supply.
- Zero wait state.
- Socket for 80287
co-processor on
motherboard.
- One Year Warranty!
- Factory New \& Perfect!


Item No. B-1793-132142


STAND ALONE CORDLESS PHONE

Introducing a modern-designed telephone for today-with long range reception. Now you can pick-up this phone at an UNHEARD OF LOW PRICE!
- Auto redial. - Frequency: \(46-49 \mathrm{MHz}\).
- Call button from base to phone

Tone/pulse dialing - Includes rechargeable nickel cadmium batteries. - Contemporary styling. - High quality electronics. - Model\#: CP-40. - 90 Day Warranty! - Factory New! - Factory New!

\section*{251476} TURBOSPORT 386 PORTABLE LAPTOP COMPUTER
- 80386 32-bit processor, \(12 / 6 \mathrm{NHz}\) (switchable). - \(40 \mathrm{ME}(28 \mathrm{~ms})\) hard drive. - One 35 " 1.4 MB floppy disk drive. 2 MB RAM \(100 \%\) IBM compatible. - "Page White" fluorescent backlit LCD display, \(10.5^{\prime \prime}\) viewiny area. - MS-DOS 3.21 included. - Suppots: MS OS/2 version 1.0, Xenix, and Microsoft Windows/386 enviro mments.
- Zero vait state.
- Zero vait state.
- Socker for 80387 numeric coprocessor - Internal Hayes 2400 Baud modem. - Serial and parallel printer ports. Resolution: \(640 \times 400\) pixels.
- 79 -ker full function detachable keyboard.
- Real tme clock and calendar.
- "Fast" charge NiCad battery Mig. Sugg. Retail: pack included.
- AC acapter. Dim.: \(13.25^{\prime \prime} \mathrm{W} \times 14.755^{\prime \prime} \mathrm{D} \times\) 4.75"ト.

Weight: 14.7 lbs .
- One bear Warranty!

Factory New !
Facto y Perfect!


\section*{ETIEXEDEEKSB}

DELUXE WIRELESS
- Intelliçent home securi y system. - Detec:s intruder during entry - Wireless for
easy installation easy i sstalla
- Ditficult to defeat because of ner.
advarced
advarced
technology
technology.
- Lamp comman
flashes lamp
upon intrusion
Signa relay-relays entry sensor intrusion signal from \(\varepsilon\) remote area of your home to controler - Tamper resistant. - 85 decibel alarm on inside siren. Piercing 120 decibel outside siren.
- Fail-s afe battery back-up. - Low battery warning 2 Year Warranty!
-Factery New \& Perfect!

\section*{Includes:}
- 8 entry sensors, 1 system contrcller (includes inside siren) i signal relay, 1 lamp comrrand, 1 outside siren, 2 window stickers, 1 yard sign, and complete

> Hem No B-1 793-129049

Insured Ship/Hand.: \(\$ 5.00\)

hardware and batteries

Mfg. Sugg Retail: \(\$ 698.00\) DAMARK PRICE:


Item No. B-1793-133389

InOROM. MICRO-SIZE
CORDLESS RADAR DETECTOR
- Instant-on radar gun "pulse" signals and alerts you in 1/10 of a second! - Detects \(X\) and \(K\)
band radar.
- Micro-size ...only
\(4-1 / 2^{\prime \prime} W \times 3-1 / 4^{\prime \prime} D\)
11/16"H.
InstaLok(8) dual conversion
superheterodyne receiver
- SmarTrac® anti-falsing alarm circuit blocks
false signals.
- Different audio warnings for \(X\) and \(K\) band
- LED signal strength indicators.
- City/highway switch.
- Audio jack.

Uses six "AA batteries (not included). Wi: 6-1/2oz. Model RD-XL

Accessories Include:
- Earphone, spring visor clip. suction cup windshield mount, cord clips, hook \& loop fasteners. straight \& coiled power cords with plugs, battery case, and soft vinyl carrying case.


Mfg. Sugg. Retail: \(\$ 249.95\) DAMARK PRICE:


Item No B-1793-132761 Insured Ship/Hand.: \(\$ 5.00\)

\section*{HALOGEN TORCHIERE FLOOR LAMP}

Fill your room with light from this sleek-looking Halogen Torchiere floor Lamp. It's truly a lamp of the '90s with its stylish modern design and upward position shade.
- Halogen torchiere floor lamp.
- Shines light upward, yet fills entire room.
- Variable light control switch. - 500 Watt halogen bulb included - Sleek, black finish
- U.L. approved.
- Contemporary design.
- Glass insert below shade allows light to shine downward also-for a complete

Mfg Sugg. Retail: lighting effect.
- Height: Approx. 72".
- 1 Year

Warranty!
Factory New! \(\$ 170.00\) DAMARK PRICE \(\$ 59\)

\section*{FOR FASTEST SERVICE} CALL TOLL FREE 1-800-729-9000
CUSTOMER SERVICE: 1-612-566-4940
NAME \(\qquad\)
ADDRESS
CITY \(\qquad\) ST \(\qquad\) ZIP


MasterCard
  heck/Money Order \(\square\) VISA SIGNATURE
\begin{tabular}{|l|l|l|l|l|}
\hline OTY & DESCRIPTION & ITEM \# & S/H/A & PRICE \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular} MasterCard \(\square\) Discover CARD NO.

\title{
Introducing The SG80 AM Stereo-FM Stereo Analyzer "m
}

\title{
Now For The First Time, A High-Performance AM Stereo (C-QUAMJ - FM Stereo Analyzer Integrated Into One Unit, Allowing You To Performance Test, Troubleshoot, And AIIgn To Manufacturers' Requirements
}

\section*{Now}

- Patented FM analyzing signals isolate any FM receiver defect.
- Exclusive integrated AM Stereo C-QUAM analyzer.
- Digitally accurate performance tests meet EIA/IHF requirements.
- Exclusive, tuneable FM-IF Sweep and Marker's-aligns all IF stages.
- Expandable FM features fór future service needs, pluis SCA compatible.
- Twice the capability for less than \(1 / 2\) the cost of stand-alone instruments.

C-QUAM is a registered trademãk ol Motorola, Inc.```


[^0]:    As a service to readers, RADIO-ELECTRONICS publishes available plans or information relating to newsworthy products, techniques and scientific and technological developments. Because of possible variances in the quality and condition of materials and workmanship used by readers. RADIO-ELECTRONICS disclaims any responsibility for the safe and proper functioning of reader-built projects based upon or from plans or information published in this magazine.

    Since some of the equipment and circuitry described in RADIO-ELECTRONICS may relate to or be covered by U.S. patents. RADIO-ELECTRONICS disclaims any liability for the infringement of such patents by the making, using, or selling of any such equipment or circuitry, and suggests that anyone interested in such projects consult a patent attorney.

    RADIO-ELECTRONICS, (ISSN 0033-7862) March 1990. Published monthly by Gernsback Publications, Inc., 500-B Bi-County Boulevard. Farmingdale, NY 11735 Second-Class Postage paid at Farmingdale. NY and additional mailing offices. Second-Class mail registration No. 9242 authorized at Toronto, Canada. One-year subscription rate U.S.A. and possessions \$17.97, Canada \$23.97, all other countries $\$ 26.97$. All subscription orders payable in U.S.A. funds only, via international postal money order or check drawn on a U.S. A. bank. Single copies $\$ 2.50$. © 1990 by Gernsback Publications, Inc. All rights reserved. Printed in U.S.A.
    POSTMASTER: Please send address changes to RADIO-ELECTRONICS, Subscription Dept., Box 55115 Boulder. CO 80321-5115.

    A stamped self-addressed envelope must accompany all submitted manuscripts and/or artwork or photographs if their return is desired should they be rejected. We disclaim any responsibility for the loss or damage of manuscripts and/or artwork or photographs while in our possession or otherwise.

